• 非线性超分辨纳米光学及应用(英文版)
  • 非线性超分辨纳米光学及应用(英文版)
  • 非线性超分辨纳米光学及应用(英文版)
  • 非线性超分辨纳米光学及应用(英文版)
21年品牌 40万+商家 超1.5亿件商品

非线性超分辨纳米光学及应用(英文版)

外书皮边角磕损,内新未翻阅

16 1.3折 120 八品

仅1件

河北保定
认证卖家担保交易快速发货售后保障

作者Jingsong Wei 著

出版社科学出版社

出版时间2015-01

版次1

装帧精装

货号3-13

上书时间2021-11-30

新意书店

十年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八品
外书皮边角磕损,内新未翻阅
图书标准信息
  • 作者 Jingsong Wei 著
  • 出版社 科学出版社
  • 出版时间 2015-01
  • 版次 1
  • ISBN 9787030419484
  • 定价 120.00元
  • 装帧 精装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 256页
  • 正文语种 英语
【内容简介】
  随着光电子信息技术、纳米科技和生物生命科学的发展,要求光学成像或光刻的分辨率达到亚波长甚至纳米尺度。然而,由于受到阿贝衍射极限的制约,无论是光刻的特征线宽、光盘存储器件的最小记录点尺寸、还是光学图像的分辨率,按照传统的衍射光学理论很难突破半波极限。对此,科研人员提出了各种方法和手段来挑战半波极限,实现纳米尺度的光学分辨率。《非线性超分辨纳米光学及应用(英文版)》首先分析和介绍了目前突破光学衍射极限的常见方法的原理和实验方案,然后聚焦于利用薄膜材料(特别是半导体薄膜)光学非线性效应来突破阿贝衍射极限。从薄膜材料非线性折射和吸收的表征方法出发,分析半导体薄膜以及金属掺杂半导体薄膜的非线性吸收和折射特性。
【目录】
1GeneralMethodsforObtainingNanoscaleLightSpot
1.1Introduction
1.2Near-FieldScanningProbeMethod
1.2.1Aperture-TypeProbe
1.2.2Apertureless-TypeMetalProbe
1.2.3Tip-on-Aperture-TypeProbe
1.2.4C-ApertureEncircledbySurfaceCorrugationsonaMetalFilm
1.2.5NonlinearSelf-focusingProbe
1.3SolidImmersionLensMethod
1.4SurfacePlasmonicLens
1.5StimulatedEmissionDepletionFluorescenceMicroscopeMethods
References

2Third-OrderNonlinearEffects
2.1Introduction
2.2NonlinearRefraction
2.3NonlinearAbsorption
References

3CharacterizationMethodsforNonlinearAbsorptionandRefractionCoefficients
3.1Introduction
3.2TheoryandSetupofBasicZ-scanMethod
3.2.1DescriptionofBasicPrinciple
3.2.2DataAnalysisforZ-scanCurves
3.3GenerationandEliminationofPseudo-nonlinearityinz-scanMeasurement
3.3.1IncidentAngleasaFunctionofZ-scanPosition
3.3.2DependenceofTransmittanceonIncidentandPolarizationAzimuthAngles
3.3.3IncidentAngleChange-InducedPseudo-nonlinearAbsorption
3.3.4CalculatedPseudo-nonlinearAbsorptionCurves
3.3.5ReductionorEliminationofPseudo-nonlinearAbsorption
3.4EliminatingtheInfluencefromReflectionLossonz-scanMeasurement
3.4.1FresnelReflectionLossinthez-scanMeasurement
3.4.2TheCaseofThinSamples
3.4.3TheCaseofNanofilmSamples
3.5InfluenceofFeedbackLightonz-scanMeasurement
3.5.1InfluenceofFeedbackLightonSemiconductorLaserDevices
3.5.2EliminationofFeedbackLightInfluenceonz-scanMeasurement
References

4OpticalNonlinearAbsorptionandRefractionofSemiconductorThinFilms
4.1Introduction
4.2TheoreticalBasis
4.2.1Two-BandModelforFree-Carriers-InducedNonlinearEffects
4.2.2Three-BandModelforNonlinearAbsorptionandRefraction
4.2.3ThermallyInducedNonlinearAbsorptionandRefraction
4.3NonlinearAbsorptionandRefractionofSemiconductorThinFilms.
4.3.1NonlinearSaturationAbsorptionofc-Sb-BasedPhase-ChangeThinFilms
4.3.2NonlinearReverseSaturationAbsorptionandRefractionofc-InSbThinFilms
4.3.3NonlinearReverseSaturationAbsorptionofAglnSbTeThinFilms
4.3.4NonlinearAbsorptionReversalofc-Ge2Sb2Te5ThinFilms
4.3.5NonlinearSaturationAbsorptionandRefractionofAg-dopedSiThinFilms.
4.4Summary
References

5NanoscaleSpotFormationThroughNonlinearRefractionEffect
5.1Introduction
5.2InterferenceManipulation-InducedNanoscaleSpot
5.2.1NonlinearFabry-PerotCavityStructureModel
5.3Self-focusingEffect-InducedNanoscaleSpotThrough“Thick”Samples
5.3.1MultilayerThinLensSelf-focusingModel
5.3.2LightTravelingInsidePositiveNonlinearRefractionSamples
5.3.3ComparisonwithEquivalentConvergingLensModel
5.3.4ApplicationSchematicDesign
5.4Summary
References

6OpticalSuper-ResolutionEffectThroughNonlinearSaturationAbsorption
6.1BasicDescriptionofNonlinearSaturationAbsorption-InducedSuper-ResolutionEffect
6.2Becr-LambertModelforThin(orWeak)NonlinearSaturationAbsorptionSample
6.2.1Beer-LambertAnalyticalModel
6.2.2ExperimentalObservationofSuper-ResolutionSpot
6.3Multi-layerModelforThick(orStrong)NonlinearSaturationAbsorptionSamples
6.3.1Multi-layerAnalyticalModelforFormationofPinholeChannel
6.3.2Super-ResolutionEffectAnalysisUsingMulti-layerModel
6.4Summary
References

7ResolvingImprovementbyCombinationofPupilFiltersandNonlinearThinFilms
7.1Introduction
7.2Super-ResolutionwithPupilFilters
7.2.1BinaryOpticalElementsasPupilFilters:LinearlyPolarizedLightIllumination
7.2.2TemaryopticalElementsasPupilFilters:RadiallyorCircularlyPolarizedLightIllumination
7.3CombinationofPupilFilterswithNonlinearAbsorptionThinFilms
7.3.1CombinationofNonlinearSaturationAbsorptionThinFilmswithThree-ZoneAnnularBinaryPhaseFilters:LinearlyPolarizedLightIllumination
7.3.2CombinationofNonlinearReverseSaturationAbsorptionThinFilmswithFive-ZoneBinaryPupilFilter:CircularlyPolarizedLightIllumination
7.4NonlinearThinFilmsasPupilFilters
7.4.1ScalarTheoreticalBasis
7.4.2Super-ResolutionSpotAnalysis
References

8ApplicationsofNonlinearSuper.ResolutionThinFilmsinNano.opticalDataStorage
8.1DevelopmentTrendforOpticalInformationStorage
8.2SaturationAbsorption-InducedHigh-DensityOpticalDataStorage
8.2.1Read-OnlySuper-ResolutionOpticalDiskStorage
8.2.2RecordableSuper-ResolutionNano-opticalStorage
8.3Reverse-SaturationAbsorption-InducedSuper-ResolutionOpticalStorage
8.3.1RecordableSuper-ResolutionOpticalDiskswithNonlinearReverse-SaturationAbsorption
8.3.2Read-OnlyOpticalDiskwithReverse-SaturationAbsorptionEffect
8.4Read-OnlySuper-ResolutionOpticalDiskswithThermallyInducedReflectanceChangeEffect
References

9ApplicationsofNonlinearSuper.ResolutionEffectsinNanolithographyandHigh.ResolutionLightImaging
9.1Introduction
9.2ThermalThresholdLithography
9.2.1CryStallizationThresholdLithography
9.2.2ThermalDecompositionThresholdLithography
9.2.3MoltenAblationThresholdLithography
9.2.4PatternApplication:GrayscaleLithography
9.3NanolithographybyCombinationofSaturationAbsorptionandThermalThresholdEfiects
9.3.1BasicPrinciple
9.3.2NanoscaleLithographyInducedbySiThinFilmwith405-nmLaserwavelength
9.4NanolithographybyCombinationofReverseSaturationAbsorptionandThermalDiffusionManipulation
9.4.1FormationofBelow-Diffraction-LimitedEnergyAbsorptionSpot
9.4.2ThermalDiffusionManipulationbyThermalConductiveLayer
9.4.3ExperimentalNanolithographyMarks
9.5Nonlinearity-InducedSuper-ResolutionOpticalImaging
9.5.1BasicPrincipleSchematics
9.5.2TheoreticalDescription
9.5.3ExperimentalTesting
9.6Summary
References
Remarkings
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

外书皮边角磕损,内新未翻阅
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP