• 矩阵理论及方法
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

矩阵理论及方法

正版现货 二手书籍 品相好 择优速发

87.5 八五品

仅1件

陕西西安
认证卖家担保交易快速发货售后保障

作者谢冬秀、雷纪刚、陈桂芝 著

出版社科学出版社

出版时间2012-01

版次1

装帧平装

货号9787030333322

上书时间2024-08-24

外文书店2

十一年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 谢冬秀、雷纪刚、陈桂芝 著
  • 出版社 科学出版社
  • 出版时间 2012-01
  • 版次 1
  • ISBN 9787030333322
  • 定价 43.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 306页
  • 字数 426千字
  • 正文语种 简体中文
【内容简介】
《矩阵理论及方法》介绍在工程实际中有应用价值的矩阵理论与方法。全书共7章,内容包括:线性空间与线性变换,矩阵的变换和分解,矩阵范数及其应用,矩阵分析,特征值的估计及对称矩阵的极性,几类特殊矩阵,矩阵的广义逆与直积及其应用。《矩阵理论及方法》内容丰富、阐述简明、推导严谨,为了便于读者学习,各章结合内容配备了一定数量的例题、习题,并在书后附有习题答案与提示。
《矩阵理论及方法》可作为理工科院校各专业研究生的教材,也可作为理工科和师范类院校高年级本科生的选修课教材,并可供有关专业的教师和工程技术人员参考。
【目录】
前言
第1章线性空间与线性变换
1.1线性空间
1.1.1线性空间的概念及基本性质
1.1.2基、维数与坐标
1.1.3基变换与坐标变换
1.2线性子空间
1.2.1子空间的概念
1.2.2子空间的维数与基
1.2.3子空间的交与和
1.2.4子空间的直和与补子空间
1.3线性变换及其矩阵
1.3.1线性变换的概念
1.3.2线性变换的运算
1.3.3线性变换的矩阵表示
1.4与线性变换有关的子空间
1.4.1线性变换的值域与核
1.4.2线性变换的不变子空间
1.4.3特征值与特征向量
1.4.4最小多项式
1.5欧几里得空间与酉空间
1.5.1欧几里得空间的定义与性质
1.5.2标准正交基
1.5.3正交变换与正交矩阵
1.5.4对称变换与对称矩阵
1.5.5酉空间介绍
习题1

第2章矩阵的变换与分解
2.1酉变换与酉矩阵
2.1.1酉等价
2.1.2Givens变换与Householder变换
2.2Jordan标准形与谱分解
2.2.1Jordan标准形
2.2.2谱分解
2.3Schur分解与正规矩阵
2.3.1Schur分解
2.3.2正规矩阵
2.4Gauss变换与三角分解
2.4.1Gauss变换
2.4.2Gauss消元与三角分解
2.4.3常用的直接三角分解法
2.5QR分解
2.5.1QR分解的概念
2.5.2QR分解的实际求法
2.5.3基于QR分解的参数估计问题
2.5.4矩阵与Hessenberg矩阵的正交相似问题
2.6最大秩分解
2.7奇异值分解
习题2

第3章矩阵范数及其应用
3.1向量范数
3.2矩阵范数
3.2.1矩阵范数的定义与性质
3.2.2算子范数
3.3谱范数的性质和谱半径
3.4矩阵的逆和线性方程组解的误差——范数的应用
3.4.1矩阵的非奇异性条件
3.4.2逆矩阵的扰动
3.4.3误差分析与病态方程组
习题3

第4章矩阵分析
4.1向量序列与矩阵级数
4.1.1向量序列的极限
4.1.2矩阵级数
4.2矩阵函数
4.2.1矩阵函数的定义与性质
4.2.2矩阵函数值的求法
4.3矩阵的微积分
4.3.1函数矩阵对实变量的导数
4.3.2函数矩阵对实变量的积分
4.3.3矩阵特殊的导数
4.3.4矩阵的全微分
4.4矩阵函数的一些应用
4.4.1一阶常系数齐次线性微分方程组的解
4.4.2一阶常系数非齐次线性微分方程组的解
习题4

第5章特征值的估计及对称矩阵的极性
5.1可约矩阵与对角占优矩阵
5.2特征值的估计
5.2.1特征值的界
5.2.2特征值的包含范围与谱半径的估计
5.2.3扰动理论中的特征值估计
5.3对称矩阵特征值的极性
5.3.1实对称矩阵的Rayleigh商的极性
5.3.2矩阵奇异值的极小极大性质
习题5

第6章几类特殊矩阵
6.1非负矩阵
6.1.1Perron-Frobenius定理
6.1.2非负矩阵谱半径的界
6.1.3本原矩阵与循环矩阵
6.2随机矩阵与双随机矩阵
6.3M矩阵与Stieltjes矩阵
6.3.1M矩阵
6.3.2Stieltjes矩阵
6.4广义对角占优矩阵
6.5Toeplitz矩阵与Hankel矩阵
习题6

第7章矩阵的广义逆与直积及其应用
7.1矩阵的几种广义逆
7.1.1广义逆矩阵的基本概念
7.1.2减号逆
7.1.3自反减号逆A-r
7.1.4极小范数广义逆A-m
7.1.5最小二乘广义逆A-l
7.1.6加号逆A+
7.2广义逆与线性方程组的解
7.2.1相容方程组的通解与减号逆A-
7.2.2相容方程组的极小范数解与广义逆A-m
7.2.3矛盾方程组的最小二乘解与A-1
7.2.4矛盾方程组的极小范数最小二乘解与A+
7.3矩阵的直积及其应用
7.3.1直积的概念
7.3.2直积的性质
7.3.3线性矩阵方程的可解性
习题7
习题答案与提示
参考文献
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP