Vladimir Shikhman (V. 希赫曼,德国)是国际知名学者,在数学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。
【目录】
Preface Notation 1 Introduction 1.1 Nonsmooth optimization framework 1.2 Topological approach 1.3 Genericity and stability issues 1.4 Nonlinear programming: smooth case 2 Mathematical Programming Problems with Complementarity Constraints 2.1 Applications and examples 2.2 Stability and structure of the feasible set 2.2.1 Constraint qualifications MFC and SMFC 2.2.2 SMFC implies stability and Lipschitz manifold 2.3 Critical point theory 2.4 Parametric aspects 3 General Semi—infinite Programming Problems 3.1 Applications and examples 3.2 Structure of the feasible set 3.2.1 Closure of the feasible set and Sym—MFCQ 3.2.2 Feasible set as a Lipschitz manifold 3.3 Nonsmooth symmetric reduction ansatz 3.4 Critical point theory 4 Mathematical Programming Problems with Vanishing Constraints 4.1 Applications and examples 4.2 Critical point theory 5 Bilevel Optimization 5.1 Applications and examples 5.2 Five types in parametric optimization 5.3 Structure of the feasible set: dim(x) = 1 5.4 Toward the case dim(x) ≥ 2 6 Impacts on Nonsmooth Analysis 6.1 Criticality for nonsmooth functions 6.2 Versions of Sard‘s Theorem 6.3 Regularity and implicit functions A Topology A.1 Cell attachment and deformation A.2 Whitney topology B Analysis B.1 Manifolds and implicit functions B.2 Transversality References Index
以下为对购买帮助不大的评价