代数拓扑讲义
内页干净,无笔迹。品相自定,仔细看图。
¥
95
九品
仅1件
作者[德]多德 著
出版社世界图书出版公司
出版时间2009-08
版次1
装帧平装
上书时间2024-09-02
商品详情
- 品相描述:九品
图书标准信息
-
作者
[德]多德 著
-
出版社
世界图书出版公司
-
出版时间
2009-08
-
版次
1
-
ISBN
9787510004995
-
定价
65.00元
-
装帧
平装
-
开本
32开
-
纸张
胶版纸
-
页数
377页
-
正文语种
英语
- 【内容简介】
-
Thisisessentiallyabookonsingularhomologyandcohomologywithspecialemphasisonproductsandmanifolds.Itdoesnottreathomotopytheoryexceptforsomebasicnotions,someexamples,andsomeapplica-tionsofhomologytohomotopy.Nordoesitdealwithgeneral(ised)homology,butmanyformulationsandargumentsonsingularhomologyaresochosenthattheyalsoapplytogeneralhomology.BecauseoftheseabsencesIhavealsoomittedspectralsequences,theirmainapplicationsintopologybeingtohomotopyandgeneralhomologytheory.ech-cohomologyistreatedinasimpleadhocfashionforlocallycompactsubsetsofmanifolds;ashortsystematictreatmentforarbitraryspaces,emphasizingtheuniversalpropertyofthe(ech-procedure,iscontainedinanappendix.Thebookgrewoutofaone-yearscourseonalgebraictopology,anditcanserveasatextforsuchacourse.Forashorterbasiccourse,sayofhalfayear,onemightusechaptersⅡⅢⅣ(§1-4),Ⅴ(§I-5,7,8),Ⅵ(§3,7,9,11,12).Asprerequisitesthestudentshouldknowtheelementarypartsofgeneraltopology,abeliangrouptheory,andthelanguageofcategories-althoughourchapterⅠprovidesalittlehelpwiththelattertwo.Forpedagogicalreasons,IhavetreatedintegralhomologyonlyuptochapterⅥifareaderorteacherpreferstohavegeneralcoefficientsfromthebeginningheneedstomakeonlyminoradaptions.Astotheoutlayofthebook,thereareeightchapters,Ⅰ-Ⅷandnappendix,A;eachoftheseissubdividedintoseveral
- 【目录】
-
ChapterⅠPreliminariesonCategories,AbelianGroups,andHomotopy
§1CategoriesandFunctors
§2AbelianGroups(Exactness,DirectSums,FreeAbelianGroups)
§3Homotopy
ChapterⅡHomologyofComplexes
§1Complexes
§2ConnectingHomomorphism,ExactHomologySequence
§3Chain-Homotopy
§4FreeComplexes
ChapterⅢSingularHomology
§1StandardSimplicesandTheirLinearMaps
§2TheSingularComplex
§3SingularHomology
§4SpecialCases
§5InvarianceunderHomotopy
§6BarycentricSubdivision
§7SmallSimplices.Excision
§8Mayer-VietorisSequences
ChapterⅣApplicationstoEuclideanSpace
§1StandardMapsbetweenCellsandSpheres
§2HomologyofCellsandSpheres
§3LocalHomology
§4TheDegreeofaMap
§5LocalDegrees
§6HomologyPropertiesofNeighborhoodRetractsinIRn
§7JordanTheorem,InvarianceofDomain
§8EuclideanNeighborhoodRetracts(ENRs)
ChapterⅤCellularDecompositionandCellularHomology
§1CellularSpaces
§2CW-Spaces
§3Examples
§4HomologyPropertiesofCW-Spaces
§5TheEuler-PoincareCharacteristic
§6DescriptionofCellularChainMapsandoftheCellularBoundaryHomomorphism
§7SimplicialSpaces
§8SimplicialHomology
ChapterⅥFunctorsofComplexes
§1Modules
§2AdditiveFunctors
§3DerivedFunctors
§4UniversalCoefficientFormula
§5TensorandTorsionProducts
§6HomandExt
§7SingularHomologyandCohomologywithGeneralCoefficientGroups
§8TensorproductandBilinearity
§9TensorproductofComplexesKunnethFormula
§10HornofComplexes.HomotopyClassificationofChainMaps
§11AcyclicModels
§12TheEilenberg-ZilberTheorem.KunnethFormulasforSpaces
ChapterⅦProducts
§1TheScalarProduct
§2TheExteriorHomologyProduct
§3TheInteriorHomologyProduct(PontrjaginProduct
§4IntersectionNumbersinIRn
§5TheFixedPointIndex
§6TheLefschetz-HopfFixedPointTheorem
§7TheExteriorCohomologyProduct
§8TheInteriorCohomologyProductProduct
§9.ProductsinProjectiveSpaces.HopfMapsandHopfInvariant
§10HopfAlgebras
§llTheCohomologySlantProduct
§12TheCap-Product(Product)
§13TheHomologySlantProduct,andthePontrjaginSlantProductManffolds
ChapterⅧManifolds
§lElementaryPropertiesofManifolds
§2TheOrientationBundleofaManifold
§3HomologyofDimension≧ninn.Manifolds
§4FundamentalClassandDegree
§5Limits
§6CechCohomologyofLocallyCompactSubsetsof
§7Poincar6-LefschetzDuality
§8Examples,Applications
§9Dualityina-Manifolds
§10Transfer
§11ThomClass,ThornIsomorphism
§12TheGysinSequence.Examples
§13IntersectionofHomologyClassesKan.andCech-ExtensionsofFunctors
Appendix
§lLimitsofFunctors
§2PolyhcdtonsunderaSpace,andPartitionsofUnity
§3ExtendingFunctorsfromPolyhedronstomoreGeneralSpacesBibliographySubjectIndex
Bibliography
SubjectIndex
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价