多元数据分析原理与实践
¥
50.34
6.3折
¥
79.9
全新
库存5件
作者杨寿渊
出版社清华大学出版社
出版时间2023-11
版次1
装帧其他
货号607 11-6
上书时间2024-11-06
商品详情
- 品相描述:全新
图书标准信息
-
作者
杨寿渊
-
出版社
清华大学出版社
-
出版时间
2023-11
-
版次
1
-
ISBN
9787302648628
-
定价
79.90元
-
装帧
其他
-
开本
16开
-
页数
356页
-
字数
526千字
- 【内容简介】
-
本书是多元数据分析的基础教材,内容涵盖方差分析、总体分布和独立性检验、矩阵的奇异值分解、多元线性回归分析、主成分分析、因子分析、聚类分析、多维标度分析、判别分析、逻辑回归分析、典型相关分析等多元数据分析的核心内容。写作上力求深入浅出、循序渐进,既照顾学生的理解能力与学习兴趣,又考虑内容的全面性与深度。本书在内容取舍、习题选择等方面依据作者的教学经验做了仔细考虑,同时参考国内外的经典教材与文献,力求做到与时俱进,能够与前置和后续课程很好地衔接。书中除了方法原理讲解外,还有大量计算和应用实例,并附有完整的MATLAB代码和数据集,以及详细的使用说明和代码注释,读者能够很容易地实现所学方法。每章末尾均有拓展阅读建议,供学有余力或有兴趣的学生参考。此外,本书还配有用LaTeX精心制作的PDF课件,方便授课教师使用。本书可作为基础数学、概率统计、应用数学、大数据、管理科学与工程、金融工程等专业的本科教材,也可作为相关专业研究生基础课程的教材或参考书。
- 【目录】
-
第1章 导论与预备知识 1
1.1 数据分析的研究对象 1
1.2 向量空间 3
1.3 范数 7
1.4 内积空间 9
1.5 线性变换 12
1.6 特征值与特征向量 16
1.7 正交补空间和保范变换 23
1.8 多维随机变量 26
1.8.1 随机向量的分布和独立性 26
1.8.2 随机向量的数字特征 28
1.8.3 多维正态分布 29
1.9 多元统计量及抽样分布 36
1.9.1 总体、样本和统计量 36
1.9.2 估计量的评价标准 38
1.9.3 常用的多元抽样分布 41
拓展阅读建议 44
第1章习题 44
第2章 方差分析 46
2.1 单变量的均值检验 46
2.2 单变量的方差分析 49
2.3 多元均值检验 54
2.4 多元方差分析 59
2.5 协方差矩阵相等的检验 62
2.6 MATLAB方差分析工具 64
拓展阅读建议 67
第2章习题 68
第3章 关于总体分布的检验和独立性检验 69
3.1 拟合优度检验 69
3.1.1 多项分布的中心极限定理 69
3.1.2 拟合优度检验 71
3.1.3 理论分布中含有未知参数的拟合优度检验 75
3.2 正态性检验 78
3.2.1 图示法 79
3.2.2 拟合优度检验 85
3.2.3 Kolmogorov-Smirnov检验 87
3.2.4 偏度和峰度 89
3.2.5 Jarque-Bera检验 91
3.3 独立性检验 92
3.3.1 引例 92
3.3.2 列联表分析 94
拓展阅读建议 96
第3章习题 96
第4章 奇异值分解 99
4.1 奇异值分解定理 99
4.2 几何解释 104
4.3 应用 106
4.3.1 矩阵的低秩逼近和数据压缩 106
4.3.2 超定线性方程组和矩阵的伪逆 112
拓展阅读建议 114
第4章习题 114
第5章 多元线性回归分析 116
5.1 线性回归模型 116
5.2 最小二乘估计 117
5.3 几何解释 123
5.4 偏相关系数 126
5.5 线性回归模型的推断及评价 134
5.6 实例 137
拓展阅读建议 140
第5章习题 140
第6章 主成分分析 142
6.1 概述 142
6.2 数学模型 143
6.3 主成分模型的解 144
6.4 主成分的性质 147
6.5 主成分分析的计算实现 150
6.6 实践中需要考虑的问题 154
6.6.1 适合用主成分法降维的数据 154
6.6.2 是否先对数据进行标准化处理 156
6.6.3 应该保留多少个主成分 156
6.7 实例 161
拓展阅读建议 164
第6章习题 164
第7章 因子分析 165
7.1 概述 165
7.2 数学模型 167
7.3 因子模型的参数估计 168
7.3.1 主成分法 169
7.3.2 主因子法 171
7.3.3 极大似然估计 173
7.3.4 三种参数估计法的比较 176
7.4 因子旋转 179
7.4.1 基本思想 179
7.4.2 因子旋转方法 180
7.4.3 应用实例 182
7.5 因子得分的估计 186
7.5.1 最小二乘法 186
7.5.2 加权最小二乘估计 187
7.5.3 回归法 188
7.5.4 因子正交旋转对因子得分的影响 189
7.5.5 应用实例 189
拓展阅读建议 193
第7章习题 193
第8章 聚类分析 195
8.1 概述 195
8.2 相似性度量 196
8.2.1 距离 196
8.2.2 相似系数 198
8.2.3 用MATLAB计算距离矩阵和不相似度矩阵 199
8.3 系统聚类法 201
8.3.1 常用的系统聚类法 201
8.3.2 系统聚类法的步骤 205
8.3.3 系统聚类的实现 208
8.3.4 系统聚类法的性质 212
……
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价