Introduction to Impact Dynamics 冲击动力学
¥
49.77
6.3折
¥
79
全新
仅1件
作者余同希;邱信明
出版社清华大学出版社
出版时间2023-08
版次1
装帧其他
货号607 12-23
上书时间2024-12-23
商品详情
- 品相描述:全新
图书标准信息
-
作者
余同希;邱信明
-
出版社
清华大学出版社
-
出版时间
2023-08
-
版次
1
-
ISBN
9787302643623
-
定价
79.00元
-
装帧
其他
-
开本
16开
-
纸张
胶版纸
-
页数
568页
- 【内容简介】
-
本书的特点是强调冲击动力学的基本概念、基本模型和基本方法,首先阐明冲击动力学的三个要素(即:应力波、材料的动态行为、结构动力响应中的惯性效应),然后着重通过简明的实例解说简化模型和分析方法,既避免沉湎于数学推演而忘却工程应用背景,又不因陈述技术细节而迷失学科的核心价值。本书作为教材,可供40学时左右的研究生课程采用;它将为固体力学、航空航天、汽车工程、防护工程及国防工程专业的研究生提供冲击动力学领域的前沿科学知识和相关的研究方法,为他们从事有关的课题研究打下基础。同时,也可以供相关专业的教师、研究人员、工程师和大学高年级学生自学和参考。
- 【作者简介】
-
余同希 英国剑桥大学哲学博士(1983年)、科学博士(1995年)。曾任北京大学力学系教授,英国曼彻斯特理工大学机械工程系教授。1995年加入香港科技大学,先后任工学院副院长、机械工程系系主任、协理副校长、霍英东研究院院长等职。研究主要集中于冲击动力学、塑性力学、结构与材料的能量吸收、复合材料与多胞材料等领域,擅长对工程问题建立力学模型并由此揭示其变形和失效机理。已出版专著3本,教材4本,发表论文330余篇,论文被引用超过3000次。担任国际冲击工程学报副主编、国际机械工程学报的副主编,以及十余种学术刊物的编委。在本领域具有权威学术地位和超过30年的教学经验。
- 【目录】
-
Contents
Preface vii
Introduction ix
Part 1 Stress Waves in Solids 1
1 Elastic Waves 3
1.1 Elastic Wave in a Uniform Circular Bar 3
1.1.1 The Propagation of a Compressive Elastic Wave 3
1.2 Types of Elastic Wave 6
1.2.1 Longitudinal Waves 6
1.2.2 Transverse Waves 7
1.2.3 Surface Wave (Rayleigh Wave) 7
1.2.4 Interfacial Waves 8
1.2.5 Waves in Layered Media (Love Waves) 8
1.2.6 Bending (Flexural) Waves 8
1.3 Reflection and Interaction of Waves 9
1.3.1 Mechanical Impedance 9
1.3.2 Waves When they Encounter a Boundary 10
1.3.3 Reflection and Transmission of 1D Longitudinal Waves 11 Questions 1 17 Problems 1 18
2 Elastic-Plastic Waves 19
2.1 One-Dimensional Elastic-Plastic Stress Wave in Bars 19
2.1.1 A Semi-Infinite Bar Made of Linear Strain-Hardening Material Subjected to a Step Load at its Free End 21
2.1.2 A Semi-Infinite Bar Made of Decreasingly Strain-Hardening Material Subjected to a Monotonically Increasing Load at its Free End 22
2.1.3 A Semi-Infinite Bar Made of Increasingly Strain-Hardening Material Subjected to a Monotonically Increasing Load at its Free End 23
2.1.4 Unloading Waves 25
Contents
2.1.5 Relationship Between Stress and Particle Velocity 26
2.1.6 Impact of a Finite-Length Uniform Bar Made of Elastic-Linear Strain-Hardening Material on a Rigid Flat Anvil 28
2.2 High-Speed Impact of a Bar of Finite Length on a Rigid Anvil (Mushrooming) 31
2.2.1 Taylor’s Approach 31
2.2.2 Hawkyard’s Energy Approach 36 Questions 2 38 Problems 2 38
Part 2 Dynamic Behavior of Materials under High Strain Rate 39
3 Rate-Dependent Behavior of Materials 41
3.1 Materials’ Behavior under High Strain Rates 41
3.2 High-Strain-Rate Mechanical Properties of Materials 44
3.2.1 Strain Rate Effect of Materials under Compression 44
3.2.2 Strain Rate Effect of Materials under Tension 44
3.2.3 Strain Rate Effect of Materials under Shear 47
3.3 High-Strain-Rate Mechanical Testing 48
3.3.1 Intermediate-Strain-Rate Machines 48
3.3.2 Split Hopkinson Pressure Bar (SHPB) 53
3.3.3 Expanding-Ring Technique 61
3.4 Explosively Driven Devices 62
3.4.1 Line-Wave and Plane-Wave Generators 63
3.4.2 Flyer Plate Accelerating 65
3.4.3 Pressure-Shear Impact Configuration 66
3.5 Gun Systems 67
3.5.1 One-Stage Gas Gun 67
3.5.2 Two-Stage Gas Gun 68
3.5.3 Electric Rail Gun 69 Problems 3 69
4 Constitutive Equations at High Strain Rates 71
4.1 Introduction to Constitutive Relations 71
4.2 Empirical Constitutive Equations 72
4.3 Relationship between Dislocation Velocity and Applied Stress 76
4.3.1 Dislocation Dynamics 76
4.3.2 Thermally Activated Dislocation Motion 81
4.3.3 Dislocation Drag Mechanisms 85
4.3.4 Relativistic Effects on Dislocation Motion 85
4.3.5 Synopsis 86
4.4 Physically Based Constitutive Relations 87
4.5 Experimental Validation of Constitutive Equations 90 Problems 4 90
Part 3 Dynamic Response of Structures to Impact and Pulse Loading 91
5 Inertia Effects and Plastic Hinges 93
5.1 Relationship between Wave Propagation and Global Structural Response 93
5.2 Inertia Forces in Slender Bars 94
5.2.1 Notations and Sign Conventions for Slender Links and Beams 95
5.2.2 Slender Link in General Motion 96
5.2.3 Examples of Inertia Force in Beams 97
5.3 Plastic Hinges in a Rigid-Plastic Free–Free Beam under Pulse Loading 102
5.3.1 Dynamic Response of Rigid-Plastic Beams 102
5.3.2 A Free–Free Beam Subjected to a Concentrated Step Force 104
5.3.3 Remarks on a Free–Free Beam Subjected to a Step Force at its Midpoint 108
5.4 A Free Ring Subjected to a Radial Load 109
5.4.1 Comparison between a Supported Ring and a Free Ring 112 Questions 5 112 Problems 5 112
6 Dynamic Response of Cantilevers 115
6.1 Response to Step Loading 115
6.2 Response to Pulse Loading 120
6.2.1 Rectangular Pulse 120
6.2.2 General Pulse 125
6.3 Impact on a Cantilever 126
6.4 General Features of Traveling Hinges 133 Problems 6 136
7 Effects of Tensile and Shear Forces 139
7.1 Simply Supported Beams with no Axial Constraint at Supports 139
7.1.1 Phase I 139
7.1.2 Phase II 142
7.2 Simply Supported Beams with Axial Constraint at Supports 144
7.2.1 Bending Moment and Tensile Force in a Rigid-Plastic Beam 144
7.2.2 Beam with Axial Constraint at Support 146
7.2.3 Remarks 151
7.3 Membrane Factor Method in Analyzing the Axial Force Effect 151
7.3.1 Plastic Energy Dissipation and the Membrane Factor 151
7.3.2 Solution using the Membrane Factor Method 153
7.4 Effect of Shear Deformation 155
7.4.1 Bending-Only Theory 156
7.4.2 Bending-Shear Theory 158
7.5 Failure Modes and Criteria of Beams under Intense Dynamic Loadings 161
7.5.1 Three Basic Failure Modes Observed in Experiments 161
7.5.2 The Elementary Failure Criteria 163
7.5.3 Energy Density Criterion 165
7.5.4 A Further Study of Plastic Shear Failures 166
Contents
Questions 7 168
Problems 7 168
Mode Technique, Bound Theorems, and Applicability of the Rigid-Perfectly Plastic Model 169
8.1 Dynamic Modes of Deformation 169
8.2 Properties of Modal Solutions 170
8.3 Initial Velocity of the Modal Solutions 172
8.4 Mode Technique Applications 174
8.4.1 Modal Solution of the Parkes Problem 174
8.4.2 Modal Solution for a Partially Loaded Clamped Beam 176
8.4.3 Remarks on the Modal Technique 179
8.5 Bound Theorems for RPP Structures
8.5.1 Upper Bound of Final Displacement
8.5.2 Lower Bound of Final Displacement
8.6 Applicability of an RPP Model 183 Problems 8 186
180
180
181
9 Response of Rigid-Plastic Plates 187
9.1 Static Load-Carrying Capacity of Rigid-Plastic Plates 187
9.1.1 Load Capacity of Square Plates 188
9.1.2 Load Capacity of Rectangular Plates 190
9.1.3 Load-Carrying Capacity of Regular Polygonal Plates 192
9.1.4 Load-Carrying Capacity of Annular Plate Clamped at its Outer Boundary 194
9.1.5 Summary 196
9.2 Dynamic Deformation of Pulse-Loaded Plates 196
9.2.1 The Pulse Approximation Method 196
9.2.2 Square Plate Loaded by Rectangular Pulse 197
9.2.3 Annular Circular Plate Loaded by Rectangular Pulse Applied on its Inner Boundary 201
9.2.4 Summary 204
9.3 Effect of Large Deflection 204
9.3.1 Static Load-Carrying Capacity of Circular Plates in Large Deflection 205
9.3.2 Dynamic Response of Circular Plates with Large Deflection 209 Problems 9 210
10 Case Studies 213
10.1 Theoretical Analysis of Tensor Skin 213
10.1.1 Introduction to Tensor Skin 213
10.1.2 Static Response to Uniform Pressure Loading 213
10.1.3 Dynamic Response of Tensor Skin 217
10.1.4 Pulse Shape 218
10.2 Static and Dynamic Behavior of Cellular Structures 219
10.2.1 Static Response of Hexagonal Honeycomb 221
10.2.2 Static Response of Generalized Honeycombs 223
10.2.3 Dynamic Response of Honeycomb Structures 228
v
10.3 Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading 233
10.3.1 An Analytical Model for the Shock Resistance of Clamped Sandwich Plates 234
10.3.2 Comparison of Finite Element and Analytical Predictions 238
10.3.3 Optimal Design of Sandwich Plates 239
10.4 Collision and Rebound of Circular Rings and Thin-Walled Spheres on Rigid Target 241
10.4.1 Collision and Rebound of Circular Rings 241
10.4.2 Collision and Rebound of Thin-Walled Spheres 249
10.4.3 Concluding Remarks 257
References 259
Index 265
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价