¥ 33 4.8折 ¥ 69 全新
仅1件
作者王志立
出版社清华大学出版社
出版时间2021-01
版次1
装帧平装
货号58362131
上书时间2024-11-15
目录
第1章导论
1.1本书学习路线
1.2人工智能与深度学习
1.3深度学习的算法流程
1.3.1特征工程
1.3.2模型评估
1.4总结
第2章Python开发环境搭建
2.1Linux服务器
2.1.1下载与安装
2.1.2使用mobaxterm连接远程服务器
2.1.3在服务器上安装Python开发环境
2.1.4Jupyter Notebook的使用
2.2Windows平台
2.2.1下载Anaconda
2.2.2安装配置
2.2.3安装路径配置
2.2.4系统环境配置
2.2.5在Windows上使用Jupyter Notebook
2.3使用Anaconda国内源
2.3.1更换清华源
2.3.2更换中科大源
2.3.3pip设定永久阿里云源
2.4Python虚拟环境
2.4.1创建Python虚拟环境
2.4.2切换虚拟环境
2.4.3在虚拟环境中安装额外的包
2.4.4虚拟环境的相关命令
2.5PyCharm远程连接服务器
2.5.1下载PyCharm专业版
2.5.2PyCharm连接虚拟环境
2.5.3使用screen进行任务管理
2.6总结
第3章Python基础
3.1Python简介
3.2Python初阶学习
3.2.1变量赋值
3.2.2标准数据类型
3.2.3数据类型转换
3.2.4算术运算符
3.2.5格式化
3.3Python进阶学习
3.3.1循环
3.3.2条件语句
3.3.3文件I/O
3.3.4异常
3.3.5导包
3.4Python高阶学习
3.4.1面向过程编程
3.4.2面向对象编程
3.4.3面向过程与面向对象的区别
3.5正则表达式
3.5.1re.match
3.5.2re.search
3.5.3re.sub
3.5.4re.compile 函数与findall
3.5.5正则表达式的重点
3.6进程与线程
3.6.1多进程的例子
3.6.2多线程例子
3.7总结
第4章深度学习
4.1Keras简介
4.1.1Keras的优点
4.1.2Keras的缺点
4.1.3Keras的安装
4.2全连接神经网络
4.2.1全连接神经网络简介
4.2.2全连接神经网络原理
4.2.3全连接神经网络小结
4.3卷积神经网络
4.3.1全连接神经网络的缺点
4.3.2卷积神经网络原理
4.3.3卷积神经网络与全连接神经网络的区别
4.3.4卷积层
4.3.5局部连接和权值共享
4.3.6池化层
4.3.7训练
4.3.8卷积神经网络的超参数设置
4.3.9卷积神经网络小结
4.4超参数
4.4.1过拟合
4.4.2优化器
4.4.3学习率
4.4.4常见的激励函数
4.4.5常见的损失函数
4.4.6其他超参数
4.4.7超参数设置小结
4.5自编码器
4.5.1自编码器的原理
4.5.2常见的自编码器
4.5.3自编码器小结
4.6RNN与RNN的变种结构
4.6.1RNN与全连接神经网络的区别
4.6.2RNN的优势
4.6.3其他RNN结构
4.6.4LSTM
4.6.5门控循环单元
4.6.6RNN与RNN变种结构小结
4.7代码实践
4.7.1全连接神经网络回归――房价预测
4.7.2全连接神经网络与文本分类
4.7.3卷积神经网络之文本分类
4.7.4卷积神经网络之图像分类
4.7.5自编码器
4.7.6LSTM实例之预测股价趋势
4.8总结
第5章生成对抗网络
5.1生成对抗网络的原理
5.2生成对抗网络的训练过程
5.3实验
5.3.1代码
5.3.2结果分析
5.4总结
第6章遗传算法与神经网络
6.1遗传演化神经网络
6.1.1遗传算法原理
6.1.2遗传算法整体流程
6.1.3遗传算法遇上神经网络
6.1.4演化神经网络实验
6.2遗传拓扑神经网络
6.2.1遗传拓扑神经网络原理
6.2.2算法核心
6.2.3NEAT实验
6.3总结
第7章迁移学习与计算机视觉
7.1计算机视觉
7.1.1图像分类
7.1.2目标检测
7.1.3语义分割
7.1.4实例分割
7.2计算机视觉遇上迁移学习
7.2.1VGG
7.2.2VGG16与图像分类
7.2.3VGG16与目标检测
7.2.4VGG16与语义分割
7.2.5ResNeXt与实例分割
7.3迁移学习与计算机视觉实践
7.3.1实验环境
7.3.2实验流程
7.3.3代码
7.3.4结果分析
7.4总结
第8章迁移学习与自然语言处理
8.1自然语言处理预训练模型
8.1.1Word2Vec
8.1.2BERT
8.1.3RoBERTa
8.1.4ERNIE
8.1.5BERT_WWM
8.1.6NLP预训练模型对比
8.2自然语言处理四大下游任务
8.2.1句子对分类任务
8.2.2单句子分类任务
8.2.3问答任务
8.2.4单句子标注任务
8.3迁移学习与自然语言处理竞赛实践
8.3.1赛题背景
8.3.2赛题任务
8.3.3数据说明
8.3.4环境搭建
8.3.5赛题分析
8.3.6实验代码
8.4总结
参考文献
— 没有更多了 —
以下为对购买帮助不大的评价