Reinforcement Learning and Dynamic Programming Using Function Approximators 英文原版 基于函数逼近的强化学习与动态规划 Q值迭代 近似策略 基函数 人工智能 机器学习 自动控制专业人员
  • Reinforcement Learning and Dynamic Programming Using Function Approximators 英文原版 基于函数逼近的强化学习与动态规划 Q值迭代 近似策略 基函数 人工智能 机器学习 自动控制专业人员
  • Reinforcement Learning and Dynamic Programming Using Function Approximators 英文原版 基于函数逼近的强化学习与动态规划 Q值迭代 近似策略 基函数 人工智能 机器学习 自动控制专业人员
  • Reinforcement Learning and Dynamic Programming Using Function Approximators 英文原版 基于函数逼近的强化学习与动态规划 Q值迭代 近似策略 基函数 人工智能 机器学习 自动控制专业人员

Reinforcement Learning and Dynamic Programming Using Function Approximators 英文原版 基于函数逼近的强化学习与动态规划 Q值迭代 近似策略 基函数 人工智能 机器学习 自动控制专业人员

原版正版

699 北京昌平

九五品 库存1件

作者Lucian Busoniu

出版社CRC Press

ISBN9781439821084

出版时间2010-03

装帧精装

页数280页

上书时间2019-09-19

  • 店主推荐
  • 最新上架

   商品详情   

品相描述:九五品
商品描述
From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems.

 However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence.

Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications.

The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work.

Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

—  没有更多了  —