深度学习与智慧交通
正版新书 新华官方库房直发 可开电子发票
¥
42.34
7.3折
¥
58
全新
库存4件
作者焦海宁,郭濠奇
出版社冶金工业出版社
ISBN9787502492007
出版时间2022-06
版次1
装帧平装
开本16开
纸张胶版纸
页数156页
字数208千字
定价58元
货号SC:9787502492007
上书时间2024-12-24
商品详情
- 品相描述:全新
-
全新正版 提供发票
- 商品描述
-
内容简介:
本书介绍了智慧交通和深度学习的基本内涵及国内外研究状况,提出了将深度学习融入智慧交通的研究体系,具体通过基于RetinaNet的车牌识别系统、交通枢纽关键物体检测、基于CSRNet算法的交通人群计数、基于SSD交通标志检测识别、交通枢纽的关键物体跟踪等多个案例进行详细探讨,全方位体现了深度学习与智慧交通的完美融合。本书可供从事交通运输、无人驾驶和车联网技术的工程技术人员参考,也可供高等院校人工智能及其相关专业的师生阅读参考。
目录:
1 绪论
1.1 智慧交通概述
1.1.1 基本概念
1.1.2 体系结构
1.1.3 相关政策与研究进展
1.2 深度学习概述
1.3 交通领域中深度学习技术的应用
2 基于RetinaNet的车牌识别系统
2.1 概述
2.1.1 车牌识别的意义
2.1.2 研究现状分析
2.2 RetinaNet
2.2.1 RetinaNet的特征提取网络
2.2.2 锚点设置
2.2.3 Focal loss损失函数
2.3 基于卷积神经网络的字符识别
2.3.1 字符分类识别框架
2.3.2 字符特征提取网络
2.4 数据集
2.5 车牌识别实战
2.5.1 实验环境配置
2.5.2 车牌定位检测
2.5.3 车牌字符识别
2.5.4 整体功能测试
2.6 车牌识别应用软件设计
3 交通枢纽关键物体检测
3.1 概述
3.1.1 交通枢纽物体检测的意义
3.1.2 国内外研究现状
3.2 基于深度学习的交通枢纽关键物体检测
3.2.1 YOLO算法介绍
3.2.2 基于YOLO v3的交通枢纽行人检测
3.3 实验与分析
3.3.1 实验平台与Darknet框架
3.3.2 数据集制作
3.3.3 评价指标选定
3.3.4 实验结果分析
4 基于CSRNet算法的交通人群计数
4.1 人群
...
— 没有更多了 —
全新正版 提供发票
以下为对购买帮助不大的评价