• 特征工程入门与实践
21年品牌 40万+商家 超1.5亿件商品

特征工程入门与实践

正版新书 新华官方库房直发 可开电子发票

41.89 7.1折 59 全新

库存8件

江苏南京
认证卖家担保交易快速发货售后保障

作者(土)锡南·厄兹代米尔(Sinan Ozdemir),(土)迪夫娅·苏萨拉(Divya Susarla)

出版社人民邮电出版社

ISBN9787115511645

出版时间2019-06

版次1

装帧平装

开本16开

纸张胶版纸

页数210页

字数324千字

定价59元

货号SC:9787115511645

上书时间2024-09-16

文源文化

六年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
全新正版 提供发票
商品描述
作者简介:
  
主编推荐:
  
内容简介:
本书将带你了解特征工程的完整过程,使机器学习更加系统、高效。你会从理解数据开始学习,机器学习模型的成功正是取决于如何利用不同类型的特征,例如连续特征、分类特征等。你将了解何时纳入一项特征、何时忽略一项特征,以及其中的原因。你还会学习如何将问题陈述转换为有用的新特征,如何提供由商业需求和数学见解驱动的特征,以及如何在自己的机器上进行机器学习,从而自动学习数据中的特征。

目录:
章 特征工程简介  1
1.1 激动人心的例子:AI驱动的聊天 1
1.2 特征工程的重要性 2
1.3 特征工程是什么 5
1.4 机器学习算法和特征工程的评估 9
1.4.1 特征工程的例子:真的有人能预测天气吗 10
1.4.2 特征工程的评估步骤 10
1.4.3 评估监督学习算法 11
1.4.4 评估无监督学习算法 11
1.5 特征理解:我的数据集里有什么 12
1.6 特征增强:清洗数据 13
1.7 特征选择:对坏属性说不 14
1.8 特征构建:能生成新特征吗 14
1.9 特征转换:数学显神通 15
1.10 特征学习:以AI促AI 16
1.11 小结 17
第2章 特征理解:我的数据集里有什么 19
2.1 数据结构的有无 19
2.2 定量数据和定性数据 20
2.3 数据的4个等级 25
2.3.1 定类等级 26
2.3.2 定序等级 27
2.3.3 定距等级 30
2.3.4 定比等级 36
2.4 数据等级总结 38
2.5 小结 40
第3章 特征增强:清洗数据 41
3.1 识别数据中的缺失值 41
3.1.1 皮马印第安人糖尿病预测数据集 42
3.1.2 探索性数据分析 42
3.2 处理数据集中的缺失值 48
3.2.1 删除有害的行 50
3.2.2 填充缺失值 54
3.2.3 在机器学习流水线中填充值 57
3
...

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

全新正版 提供发票
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP