特征工程入门与实践
正版二手书籍,有少量笔记,套装书先咨询客服再下单,无光盘,无册
¥
12.36
2.1折
¥
59
八五品
库存18件
作者[土耳其]锡南·厄兹代米尔(Sinan Ozdemir);迪夫娅·苏萨拉(Divya
出版社人民邮电出版社
出版时间2019-06
版次1
装帧其他
货号9787115511645
上书时间2024-10-07
商品详情
- 品相描述:八五品
图书标准信息
-
作者
[土耳其]锡南·厄兹代米尔(Sinan Ozdemir);迪夫娅·苏萨拉(Divya
-
出版社
人民邮电出版社
-
出版时间
2019-06
-
版次
1
-
ISBN
9787115511645
-
定价
59.00元
-
装帧
其他
-
开本
16开
-
纸张
胶版纸
-
页数
210页
-
字数
324千字
- 【内容简介】
-
本书将带你了解特征工程的完整过程,使机器学习更加系统、高效。你会从理解数据开始学习,机器学习模型的成功正是取决于如何利用不同类型的特征,例如连续特征、分类特征等。你将了解何时纳入一项特征、何时忽略一项特征,以及其中的原因。你还会学习如何将问题陈述转换为有用的新特征,如何提供由商业需求和数学见解驱动的特征,以及如何在自己的机器上进行机器学习,从而自动学习数据中的特征。
- 【作者简介】
-
锡南·厄兹代米尔(Sinan Ozdemir)
数据科学家、数学家、约翰·霍普金斯大学讲师,Kylie.ai公司联合创始人、CTO,在应用数据挖掘、功能分析和算法开发做出基于数据和知识的决策方面拥有丰富的经验。
迪夫娅·苏萨拉(Divya Susarla)
在利用数据方面经验丰富,在包括投资管理、社会企业咨询和红9营销的各个产业和领域里实现并应用过相应的策略。Kylie.ai公司产品经理,目前专注于自然语言处理和生成技术。
- 【目录】
-
第 1章 特征工程简介 1
1.1 激动人心的例子:AI驱动的聊天 1
1.2 特征工程的重要性 2
1.3 特征工程是什么 5
1.4 机器学习算法和特征工程的评估 9
1.4.1 特征工程的例子:真的有人能预测天气吗 10
1.4.2 特征工程的评估步骤 10
1.4.3 评估监督学习算法 11
1.4.4 评估无监督学习算法 11
1.5 特征理解:我的数据集里有什么 12
1.6 特征增强:清洗数据 13
1.7 特征选择:对坏属性说不 14
1.8 特征构建:能生成新特征吗 14
1.9 特征转换:数学显神通 15
1.10 特征学习:以AI促AI 16
1.11 小结 17
第 2章 特征理解:我的数据集里有什么 19
2.1 数据结构的有无 19
2.2 定量数据和定性数据 20
2.3 数据的4个等级 25
2.3.1 定类等级 26
2.3.2 定序等级 27
2.3.3 定距等级 30
2.3.4 定比等级 36
2.4 数据等级总结 38
2.5 小结 40
第3章 特征增强:清洗数据 41
3.1 识别数据中的缺失值 41
3.1.1 皮马印第安人糖尿病预测数据集 42
3.1.2 探索性数据分析 42
3.2 处理数据集中的缺失值 48
3.2.1 删除有害的行 50
3.2.2 填充缺失值 54
3.2.3 在机器学习流水线中填充值 57
3.3 标准化和归一化 61
3.3.1 z分数标准化 63
3.3.2 min-max标准化 67
3.3.3 行归一化 68
3.3.4 整合起来 69
3.4 小结 70
第4章 特征构建:我能生成新特征吗 71
4.2 填充分类特征 72
4.2.1 自定义填充器 74
4.2.2 自定义分类填充器 74
4.2.3 自定义定量填充器 76
4.3 编码分类变量 77
4.3.1 定类等级的编码 77
4.3.2 定序等级的编码 79
4.3.3 将连续特征分箱 80
4.3.4 创建流水线 82
4.4 扩展数值特征 83
4.4.1 根据胸部加速度计识别动作的数据集 83
4.4.2 多项式特征 86
4.5 针对文本的特征构建 89
4.5.1 词袋法 89
4.5.2 CountVectorizer 90
4.5.3 TF-IDF向量化器 94
4.5.4 在机器学习流水线中使用文本 95
4.6 小结 97
第5章 特征选择:对坏属性说不 98
5.1 在特征工程中实现更好的性能 99
5.2 创建基准机器学习流水线 103
5.3 特征选择的类型 106
5.3.1 基于统计的特征选择 106
5.3.2 基于模型的特征选择 117
5.4 选用正确的特征选择方法 125
5.5 小结 125
第6章 特征转换:数学显神通 127
6.1 维度缩减:特征转换、特征选择与特征构建 129
6.2 主成分分析 130
6.2.1 PCA的工作原理 131
6.2.2 鸢尾花数据集的PCA——手动处理 131
6.2.3 scikit-learn的PCA 137
6.2.4 中心化和缩放对PCA的影响 144
6.3 线性判别分析 148
6.3.1 LDA的工作原理 149
6.3.2 在scikit-learn中使用LDA 152
6.4 LDA与PCA:使用鸢尾花数据集 157
6.5 小结 160
第7章 特征学习:以AI促AI 161
7.1 数据的参数假设 161
7.1.1 非参数谬误 163
7.1.2 本章的算法 163
7.2 受限玻尔兹曼机 163
7.2.1 不一定降维 164
7.2.2 受限玻尔兹曼机的图 164
7.2.3 玻尔兹曼机的限制 166
7.2.4 数据重建 166
7.2.5 MNIST数据集 167
7.3 伯努利受限玻尔兹曼机 169
7.3.1 从MNIST中提取PCA主成分 170
7.3.2 从MNIST中提取RBM特征 177
7.4.1 对原始像素值应用线性模型 178
7.4.3 对提取的RBM特征应用线性模型 179
7.5 学习文本特征:词向量 180
7.5.1 词嵌入 180
7.5.2 两种词嵌入方法:Word2vec和GloVe 182
7.5.3 Word2vec:另一个浅层神经网络 182
7.5.4 创建Word2vec词嵌入的gensim包 183
7.5.5 词嵌入的应用:信息检索 186
7.6 小结 190
第8章 案例分析 191
8.1 案例1:面部识别 191
8.1.1 面部识别的应用 191
8.1.2 数据 192
8.1.3 数据探索 193
8.1.4 应用面部识别 195
8.2 案例2:预测酒店评论数据的主题 200
8.2.1 文本聚类的应用 200
8.2.2 酒店评论数据 200
8.2.3 数据探索 201
8.2.4 聚类模型 203
8.2.5 SVD与PCA主成分 204
8.2.6 潜在语义分析 206
8.3 小结 210
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价