有限元方法基础论第6版
正版二手书籍,有少量笔记,套装书先咨询客服再下单,无光盘,无册子
¥
36
3.1折
¥
115
八五品
仅1件
作者[英]监凯维奇 著
出版社世界图书出版公司
出版时间2008-09
版次1
装帧平装
货号9787506292542
上书时间2024-10-23
商品详情
- 品相描述:八五品
图书标准信息
-
作者
[英]监凯维奇 著
-
出版社
世界图书出版公司
-
出版时间
2008-09
-
版次
1
-
ISBN
9787506292542
-
定价
115.00元
-
装帧
平装
-
开本
24开
-
纸张
胶版纸
-
页数
733页
-
正文语种
英语
- 【内容简介】
-
《有限元方法基础论第6版》是一套在国际上颇具权威性的经典著作(共三卷),由有限元法的创始人Zienkiewicz教授和美国加州大学Taylor教授合作撰写,初版于1967年,多次修订再版,深受力学界和工程界科技人员的欢迎。《有限元方法基础论第6版》的特点是理论可靠,内容全面,既有基础理论,又有其具体应用。第1卷目次:标准的离散系统和有限元方法的起源;弹性力学问题的直接方法;有限元概念的推广,Galerkin加权残数和变分法;‘标准的’和‘晋级的’单元形函数:Co连续性单元族;映射单元和数值积分—无限元和奇异元;线性弹性问题;场问题—热传导、电磁势、流体流动;自动网格生成;拼法试验,简缩积分和非协调元;混合公式和约束—完全场方法;不可压缩材料,混合方法和其它解法;多区域混合逼近-区域分解和“框架”方法;误差、恢复过程和误差估计;自适应有限元细分;以点为基础和单元分割的近似,扩展的有限元方法;时间维-场的半离散化、动力学问题以及分析解方法;时间维—时间的离散化近似;耦合系统;有限元分析和计算机处理。
- 【目录】
-
Preface
1Thestandarddiscretesystemandoriginsofthefiniteelementmethod
1.1Introduction
1.2Thestruraalelementandthestructuralsystem
1.3Assemblyandanalysisofastructure
1.4Theboundaryconditions
1.5Electricalandfluidnetworks
1.6Thegeneralpattern
1.7Thestandarddiscretesystem
1.8Transformationofcoordinates
1.9Problems
2Adirectphysicalapproachtoproblemsinelasticity:planestress
2.1Introduction
2.2Directformulationoffiniteelementcharacteristics
2.3Generalizationtothewholeregion-internalnodalforceconceptabandoned
2.4Displacementapproachasaminimizationoftotalpotentialenergy
2.5Convergencecriteria
2.6Discretizationerrorandconvergencerate
2.7Displacementfunctionswithdiscontinuitybetweenelementsnon-conformingelementsandthepatchtest
2.8Finiteelementsolutionprocess
2.9Numericalexamples
2.10Concludingremarks
2.11Problems
3Generalizationofthefiniteelementconcepts.Galerkin-weightedresidualandvariationalapproaches
3.1Introduction
3.2Integralorweakstatementsequivalenttothedifferentialequations
3.3Approximationtointegralformulations:theweightedresidualGalerkinmethod
3.4Virtualworkastheweakformofequilibriumequationsforanalysisofsolidsorfluids
69
3.5Partialdiscretization
3.6Convergence
3.7Whatarevariationalprinciples?
3.8Naturalvariationalprinciplesandtheirrelationtogoverningdifferentialequations
3.9Establishmentofnaturalvariationalprinciplesforlinear,self-adjoint,differentialequations
3.10Maximum,minimum,orasaddlepoint?
3.11Constrainedvariationalprinciples.Lagrangemultipliers
3.12Constrainedvariationalprinciples.Penaltyfunctionandperturbedlagrangianmethods
88
3.13Leastsquaresapproximations
3.14Concludingremarks-finitedifferenceandboundarymethods
3.15Problems
4Standardandhierarchicalelementshapefunctions:somegeneralfamiliesofCocontinuity
4.1Introduction
4.2Standardandhierarchicalconcepts
4.3Rectangularelements-somepreliminaryconsiderations
4.4Completenessofpolynomials
4.5Rectangularelements-Lagrangefamily
4.6Rectangularelements-serendipityfamily
4.7Triangularelementfamily
4.8Lineelements
4.9Rectangularprisms-Lagrangefamily
4.10Rectangularprisms-serendipityfamily
4.11Tetrahedralelements
4.12Othersimplethree-dimensionalelements
4.13Hierarchicpolynomialsinonedimension
4.14Two-andthree-dimensional,hierarchicalelementsoftherectangleorbricktype
4.15Triangleandtetrahedronfamily
4.16Improvementofconditioningwithhierarchicalforms
4.17Globalandlocalfiniteelementapproximation
4.18Eliminationofinternalparametersbeforeassembly-substructures
4.19Concludingremarks
4.20Problems
5Mappedelementsandnumericalintegrationinfiniteandsingularityelements
5.1Introduction
5.2Useofshapefunctionsintheestablishmentofcoordinatetransformations
5.3Geometricalconformityofelements
5.4Variationoftheunknownfunctionwithindistorted,curvilinearelements.Continuityrequirements
5.5Evaluationofelement-matrices.Transformationincoordinates
5.6Evaluationofelementmatrices.Transformationinareaandvolumecoordinates
5.7Orderofconvergenceformappedelements
5.8Shapefunctionsbydegeneration
5.9Numericalintegration-onedimensional
5.10Numericalintegration-rectangular(2D)orbrickregions(3D)
5.11Numericalintegration-triangularortetrahedralregions
5.12Requiredorderofnumericalintegration
5.13Generationoffiniteelementmeshesbymapping.Blendingfunctions
5.14Infinitedomainsandinfiniteelements
5.15Singularelementsbymapping-useinfracturemechanics,etc.
5.16Computationaladvantageofnumericallyintegratedfiniteelements
5.17Problems
6Problemsinlinearelasticity
6.1Introduction
6.2Governingequations
6.3Finiteelementapproximation
6.4Reportingofresults:displacements,strainsandstresses
6.5Numericalexamples
6.6Problems
7Fieldproblems-heatconduction,electricandmagneticpotentialandfluidflow
7.1Introduction
7.2Generalquasi-harmonicequation
7.3Finiteelementsolutionprocess
7.4Partialdiscretization-transientproblems
7.5Numericalexamples-anassessmentofaccuracy
7.6Concludingremarks
7.7Problems
8Automaticmeshgeneration
8.1Introduction
8.2Two-dimensionalmeshgeneration-advancingfrontmethod
8.3Surfacemeshgeneration
8.4Three-dimensionalmeshgeneration-Delaunaytriangulation
8.5Concludingremarks
8.6Problems
9Thepatchtest,reducedintegration,andnon-conformingelements
9.1Introduction
9.2Convergencerequirements
9.3Thesimplepatchtest(testsAandB)-anecessaryconditionforconvergence
332
9.4Generalizedpatchtest(testC)andthesingle-elementtest
9.5Thegeneralityofanumericalpatchtest
9.6Higherorderpatchtests
9.7Applicationofthepatchtesttoplaneelasticityelementswithstandardandreducedquadrature
9.8Applicationofthepatchtesttoanincompatibleelement
9.9Higherorderpatchtest-assessmentofrobustness
9.10Concludingremarks
9.11Problems
10Mixedformulationandconstraints-completefieldmethods
10.1Introduction
10.2Discretizationofmixedforms-somegeneralremarks
10.3Stabilityofmixedapproximation.Thepatchtest
10.4Two-fieldmixedformulationinelasticity
10.5Three-fieldmixedformulationsinelasticity
10.6Complementaryformswithdirectconstraint
10.7Concludingremarks-mixedformulationoratestofelementrobustness
10.8Problems
11Incompressibleproblems,mixedmethodsandotherproceduresofsolution
11.1Introduction
11.2Deviatoricstressandstrain,pressureandvolumechange
11.3Two-fieldincompressibleelasticity(upform)
11.4Three-fieldnearlyincompressibleelasticity(u-p-form)
11.5Reducedandselectiveintegrationanditsequivalencetopenalizedmixedproblems
11.6Asimpleiterativesolutionprocessformixedproblems:Uzawamethod
11.7Stabilizedmethodsforsomemixedelementsfailingtheincompressibilitypatchtest
11.8Concludingremarks
11.9Problems
12Multidomainmixedapproximations-domaindecompositionandframemethods
12.1Introduction
12.2LinkingoftwoormoresubdomainsbyLagrangemultipliers
12.3Linkingoftwoormoresubdomainsbyperturbedlagrangianandpenaltymethods
12.4Interfacedisplacementframe
12.5Linkingofboundary(orTrefftz)-typesolutionbytheframeofspecifieddisplacements
12.6Subdomainswithstandardelementsandglobalfunctions
12.7Concludingremarks
12.8Problems
13Errors,recoveryprocessesanderrorestimates
13.1Definitionoferrors
13.2Superconvergenceandoptimalsamplingpoints
13.3Recoveryofgradientsandstresses
13.4Superconvergentpatchrecovery-=SPR
13.5Recoverybyequilibrationofpatches-REP
13.6Errorestimatesbyrecovery
13.7Residual-basedmethods
13.8Asymptoticbehaviourandrobustnessoferrorestimators-theBabuskapatchtest
13.9Boundsonquantitiesofinterest
13.10Whicherrorsshouldconcernus7
13.11Problems
14Adaptivefiniteelementrefinement
14.1Introduction
14.2Adaptiveh-refinement
14.3p-refinementandhp-refinement
14.4Concludingremarks
14.5Problems
15Point-basedandpartitionofunityapproximations.Extendedfiniteelementmethods
15.1Introduction
15.2Functionapproximation
15.3Movingleastsquaresapproximations-restorationofcontinuityofapproximation
15.4Hierarchicalenhancementofmovingleastsquaresexpansions
15.5Pointcollocation-finitepointmethods
15.6Galerkinweightingandfinitevolumemethods
15.7Useofhierarchicandspecialfunctionsbasedonstandardfiniteelementssatisfyingthepartitionofunityrequirement
15.8Concludingremarks
15.9Problems
16Thetimedimension-semi-discretizationoffieldanddynamicproblemsandanalyticalsolutionprocedures
16.1Introduction
16.2Directformulationoftime-dependentproblemswithspatialfiniteelementsubdivision
16.3Generalclassification
16.4Freeresponse-eigenvaluesforsecond-orderproblemsanddynamicvibration
16.5Freeresponse-eigenvaluesforfirst-orderproblemsandheatconduction,etc.
16.6Freeresponse-dampeddynamiceigenvalues
16.7Forcedperiodicresponse
16.8Transientresponsebyanalyticalprocedures
16.9Symmetryandrepeatability
16.10Problems
17Thetimedimension-discreteapproximationintime
17.1Introduction
17.2Simpletime-stepalgorithmsforthefirst-orderequation
17.3Generalsingle-stepalgorithmsforfirst-andsecond-orderequations
17.4Stabilityofgeneralalgorithms
17.5Multisteprecurrencealgorithms
17.6Someremarksongeneralperformanceofnumericalalgorithms
17.7TimediscontinuousGalerkinapproximation
17.8Concludingremarks
17.9Problems
18Coupledsystems
18.1Coupledproblems-definitionandclassification
18.2Fluid-structureinteraction(ClassIproblems)
18.3Soil-porefluidinteraction(ClassIIproblems)
18.4Partitionedsingle-phasesystems-implicit-explicitpartitions(ClassIproblems)
18.5Staggeredsolutionprocesses
18.6Concludingremarks
19Computerproceduresforfiniteelementanalysis
19.1Introduction
19.2Pre-processingmodule:meshcreation
19.3Solutionmodule
19.4Post-processormodule
19.5Usermodules
AppendixA:Matrixalgebra
AppendixB:Tensor-indicialnotationintheapproximationofelasticityproblems
AppendixC:Solutionofsimultaneouslinearalgebraicequations
AppendixD:Someintegrationformulaeforatriangle
AppendixE:Someintegrationformulaeforatetrahedron
AppendixF:Somevectoralgebra
AppendixG:Integrationbypartsintwoorthreedimensions(Greenstheorem)
AppendixH:Solutionsexactatnodes
AppendixI:Matrixdiagonalizationorlumping
Authorindex
Subjectindex
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价