• long-range interactions, stochasticity 科技综合 albert c.j. luo,v. a
  • long-range interactions, stochasticity 科技综合 albert c.j. luo,v. a
  • long-range interactions, stochasticity 科技综合 albert c.j. luo,v. a
  • long-range interactions, stochasticity 科技综合 albert c.j. luo,v. a
  • long-range interactions, stochasticity 科技综合 albert c.j. luo,v. a
21年品牌 40万+商家 超1.5亿件商品

long-range interactions, stochasticity 科技综合 albert c.j. luo,v. a

none

45.45 6.7折 68 全新

库存3件

北京丰台
认证卖家担保交易快速发货售后保障

作者albert c.j. luo,v. a

出版社高等教育出版社

ISBN9787040291889

出版时间2010-06

版次1

装帧平装

开本16

页数311页

定价68元

货号xhwx_1200127458

上书时间2024-11-12

智胜图书专营店

七年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
正版特价新书
商品描述
主编:

长距离相互作用、及分数维动力学编辑:nonlinearphyicalciencefocueontherecentadvanceoffundamentaltheorieandprincipleanalyticalandymbolicapproacheawellaputationaltechniqueinnonlinearphyicalcienceandnonlinearmathematicwithengineeringapplication.

目录:

1fractionalzaslavskyandhenondiscretema
vasilye.tarasov
1.1introduction
1.2fractionalderivatives
1.2.1fractionalriemann-liouvillederivatives
1.2.2fractionalcaputoderivatives
1.2.3fractionalliouvillederivatives
1.2.4interpretationofequationswithfractionalderivatives.
1.2.5discretemawithmemory
1.3fractionalzaslavskyma
1.3.1discretechirikovandzaslavskyma
1.3.2fractionaluniversalandzaslavskymap
1.3.3kickeddampedrotatormap
1.3.4fractionalzaslavskymapfromfractionaldifferentialequations
1.4fractionalh6nonmap
1.4.1henonmap
1.4.2fractionalhenonmap
1.5fractionalderivativeinthekickedtermandzaslavskymap
1.5.1fractionalequationanddiscretemap
1.5.2examples
1.6fractionalderivativeinthekickeddampedtermandgeneralizationsofzaslavskyandhenonma
1.6.1fractionalequationanddiscretemap
1.6.2fractionalzaslavskyandhenonma
1.7conclusion
references

2self-similarity,stochasticityandfractionality
vladimirvuchaikin
2.1introduction
2.1.1tenyearsago
2.1.2twokindsofmotion
2.1.3dynamicself-similarity
2.1.4stochasticself-similarity
2.1.5self-similarityandstationarity
2.2frombrownianmotiontolevymotion
2.2.1brownianmotion
2.2.2self-similarbrownianmotioninnonstationarynonhomogeneousenvironment
2.2.3stablelaws
2.2.4discretetimelevymotion
2.2.5continuoustimelevymotion
2.2.6fractionalequationsforcontinuoustimelevymotion
2.3fractionalbrownianmotion
2.3.1differentialbrownianmotionprocess
2.3.2integralbrownianmotionprocess
2.3.3fractionalbrownianmotion
2.3.4fractionalgaussiannoises
2.3.5barnesandallanmodel
2.3.6fractionallevymotion
2.4fractionalpoissonmotion
2.4.1renewalprocesses
2.4.2self-similarrenewalprocesses
2.4.3threeformsoffractaldustgenerator
2.4.4ntharrivaltimedistribution
2.4.5fractionalpoissondistribution
2.5fractionalpoundpoissonprocess
2.5.1poundpoissonprocess
2.5.2levy-poissonmotion
2.5.3fractionalpoundpoissonmotion
2.5.4alinkbetweensolutions
2.5.5fractionalgeneralizationofthelevymotion
acknowledgments
appendix.fractionaloperators
references

3long-rangeinteractionsanddilutedworks
antoniaciani,ducciofanelliandstefanoruffo
3.1long-rangeinteractions
3.1.1lackofadditivity
3.1.2equilibriumanomalies:ensembleinequivalence,specificheatandtemperaturejum
3.1.3non-equilibriumdynamicalproperties
3.1.4quasistationarystates
3.1.5physicalexamples
3.1.6generalremarksandoutlook
3.2hamiltonianmeanfieldmodel:equilibriumandout-of-equilibriumfeatures
3.2.1themodel
3.2.2equilibriumstatisticalmechanics
3.2.3ontheemergenceofquasistationarystates:non-
equilibriumdynamics
3.3introducingdilutioninthehamiltonianmeanfieldmodel
3.3.1hamiltonianmeanfieldmodelonadilutedwork
3.3.2onequilibriumsolutionofdilutedhamiltonianmeanfield
3.3.3onquasistationarystatesinpresenceofdilution
3.3.4phasetransition
3.4conclusions
acknowledgments
references

4metastabilityandtransientsinbraindynamics:problemsandrigorousresults
valentins.afraimovich,mehmetk.muezzinogluand
mikhaili.rabinovich
4.1introduction:whatwediscussandwhynow
4.1.1dynamicalmodelingofcognition
4.1.2brainimaging
4.1.3dynamicsofemotions
4.2mentalmodes
4.2.1statespace
4.2.2functionalworks
4.2.3emotion-cognitiontandem
4.2.4dynamicalmodelofconsciousness
4.3petition——robustnessandsensitivity
4.3.1transientsversusattractorsinbrain
4.3.2cognitivevariables
4.3.3emotionalvariables
4.3.4metastabilityanddynamicalprinciples
4.3.5winnerlesspetition——structuralstabilityoftransients
4.3.6examples:petitivedynamicsinsensorysystems
4.3.7stableheteroclinicchannels
4.4basicecologicalmodel
4.4.1thelotka-volterrasystem
4.4.2stressandhysteresis
4.4.3moodandcognition
4.4.4intermittentheteroclinicchannel
4.5conclusion
acknowledgments
appendix1
appendix2
references

5dynamicsofsolitonchains:fromsimpletoplexandchaoticmotions
konstantina.gorshkov,leva.ostrovskyandyurya.stepanyants
5.1introduction
5.2stablesolitonlatticesandahierarchyofenvelopesolitons
5.3chainsofsolitonswithintheframeworkofthegardnermodel
5.4unstablesolitonlatticesandstochastisation
5.5solitonstochastisationandstrongwaveturbulenceinaresonatorwithexternalsinusoidalpumping
5.6chainsoftwo-dimensionalsolitonsinitive-dispersionmedia
5.7conclusion
fewwordsinmemoryofgeorgem.zaslavsky
references

6whatiscontrolofturbulenceincrossedfields?-donteventhinkofeliminatingallvortexes!
dimitrivolchenkov
6.1introduction
6.2stochastictheoryofturbulenceincrossedfields:vortexesofallsizesdieout,butone
6.2.1themethodofrenormalizationgroup
6.2.2phenomenologyoffullydevelopedisotropicturbulence
6.2.3quantumfieldtheoryformulationofstochastiavier-stokesturbulence
6.2.4analyticalpropertiesoffeynmandiagrams
6.2.5ultravioletrenormalizationandrg-equations
6.2.6whatdothergrepresentationssum?
6.2.7stochasticmagichydrodynamics
6.2.8renormalizationgroupinmagichydrodynamics
6.2.9criticaldimensionsinmagichydrodynamics
6.2.10criticaldimensionsofiteoperatorsinmagichydrodynamics
6.2.11operatorsofthecanonicaldimensiond=2
6.2.12vectoroperatorsofthecanonicaldimensiond=3
6.2.13instabilityinmagichydrodynamics
6.2.14longlifetoeddiesofapreferablesize
6.3insearchofloststability
6.3.1phenomenologyoflong-rangeturbulenttransportinthescrape-offlayer(sol)ofthermonuclearreactors
6.3.2stochasticmodelsofturbulenttransportincross-fieldsystems
6.3.3iterativesolutionsincrossedfields
6.3.4functionalintegralformulationofcross-fieldturbulenttransport
6.3.5large-scaleinstabilityofiterativesolutions
6.3.6turbulencestabilizationbythepoloidalelectricdrift
6.3.7qualitativediscretetimemodelofanomaloustransportinthesol
6.4conclusion
references

7entropyandtransportinbilliards
m.courbageands.m.saberifathi
7.1introduction
7.2entropy
7.2.1entropyinthelorentzgas
7.2.2somedynamicalpropertiesofthebarrierbilliardmodel
7.3transport
7.3.1transportinlorentzgas
7.3.2transportinthebarrierbilliard
7.4concluremarks
references
index

内容简介:

in memory of dr. george zalavky longrange interaction tochaticity and fractional dynamic cover the recent development of longrange interaction fractional dynamic brain dynamic and tochatic theory of turbulence each chapter wa written by etablihed cientit in the field. the book i dedicated to dr. george zalavky who wa one of three founder of the theory of hamiltonian chao. the book dicue elfimilarity and tochaticity and fractionality for dicrete and continuou dynamical ytem a well a longrange interaction and diluted work. a prehenive theory for brain dynamic i alo preented. in addition the plety and tochaticity for oliton chain and turbulence are addreed.
the book i intended for reearcher in the field of nonlinear dynamic in mathematic phyic and engineering. 
dr. albert c.j. luo i a profeor at outhern illinoi univerity edwardville ua. dr. valentin afraimovich i a profeor at an lui potoi univerity meco.
本书介绍了连续及离散动力系统的自相似、及分数维。

作者简介:

编者:罗朝俊(墨西哥)阿弗莱诺维奇(valentinafraimovich)丛书主编:(瑞典)伊布拉基莫夫dr.albertc.j.luoiaprofeoratouthernillinoiuniverityedwardvilleua.dr.valentinafraimovichiaproieoratanluipotoiuniveritymeco.

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

正版特价新书
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP