long-range interactions, stochasticity 科技综合 albert c.j. luo,v. a
none
¥
45.45
6.7折
¥
68
全新
库存3件
作者 albert c.j. luo,v. a
出版社 高等教育出版社
ISBN 9787040291889
出版时间 2010-06
版次 1
装帧 平装
开本 16
页数 311页
定价 68元
货号 xhwx_1200127458
上书时间 2024-11-12
商品详情
品相描述:全新
正版特价新书
商品描述
主编: 长距离相互作用、及分数维动力学编辑:nonlinearphyicalciencefocueontherecentadvanceoffundamentaltheorieandprincipleanalyticalandymbolicapproacheawellaputationaltechniqueinnonlinearphyicalcienceandnonlinearmathematicwithengineeringapplication. 目录: 1fractionalzaslavskyandhenondiscretema vasilye.tarasov 1.1introduction 1.2fractionalderivatives 1.2.1fractionalriemann-liouvillederivatives 1.2.2fractionalcaputoderivatives 1.2.3fractionalliouvillederivatives 1.2.4interpretationofequationswithfractionalderivatives. 1.2.5discretemawithmemory 1.3fractionalzaslavskyma 1.3.1discretechirikovandzaslavskyma 1.3.2fractionaluniversalandzaslavskymap 1.3.3kickeddampedrotatormap 1.3.4fractionalzaslavskymapfromfractionaldifferentialequations 1.4fractionalh6nonmap 1.4.1henonmap 1.4.2fractionalhenonmap 1.5fractionalderivativeinthekickedtermandzaslavskymap 1.5.1fractionalequationanddiscretemap 1.5.2examples 1.6fractionalderivativeinthekickeddampedtermandgeneralizationsofzaslavskyandhenonma 1.6.1fractionalequationanddiscretemap 1.6.2fractionalzaslavskyandhenonma 1.7conclusion references 2self-similarity,stochasticityandfractionality vladimirvuchaikin 2.1introduction 2.1.1tenyearsago 2.1.2twokindsofmotion 2.1.3dynamicself-similarity 2.1.4stochasticself-similarity 2.1.5self-similarityandstationarity 2.2frombrownianmotiontolevymotion 2.2.1brownianmotion 2.2.2self-similarbrownianmotioninnonstationarynonhomogeneousenvironment 2.2.3stablelaws 2.2.4discretetimelevymotion 2.2.5continuoustimelevymotion 2.2.6fractionalequationsforcontinuoustimelevymotion 2.3fractionalbrownianmotion 2.3.1differentialbrownianmotionprocess 2.3.2integralbrownianmotionprocess 2.3.3fractionalbrownianmotion 2.3.4fractionalgaussiannoises 2.3.5barnesandallanmodel 2.3.6fractionallevymotion 2.4fractionalpoissonmotion 2.4.1renewalprocesses 2.4.2self-similarrenewalprocesses 2.4.3threeformsoffractaldustgenerator 2.4.4ntharrivaltimedistribution 2.4.5fractionalpoissondistribution 2.5fractionalpoundpoissonprocess 2.5.1poundpoissonprocess 2.5.2levy-poissonmotion 2.5.3fractionalpoundpoissonmotion 2.5.4alinkbetweensolutions 2.5.5fractionalgeneralizationofthelevymotion acknowledgments appendix.fractionaloperators references 3long-rangeinteractionsanddilutedworks antoniaciani,ducciofanelliandstefanoruffo 3.1long-rangeinteractions 3.1.1lackofadditivity 3.1.2equilibriumanomalies:ensembleinequivalence,specificheatandtemperaturejum 3.1.3non-equilibriumdynamicalproperties 3.1.4quasistationarystates 3.1.5physicalexamples 3.1.6generalremarksandoutlook 3.2hamiltonianmeanfieldmodel:equilibriumandout-of-equilibriumfeatures 3.2.1themodel 3.2.2equilibriumstatisticalmechanics 3.2.3ontheemergenceofquasistationarystates:non- equilibriumdynamics 3.3introducingdilutioninthehamiltonianmeanfieldmodel 3.3.1hamiltonianmeanfieldmodelonadilutedwork 3.3.2onequilibriumsolutionofdilutedhamiltonianmeanfield 3.3.3onquasistationarystatesinpresenceofdilution 3.3.4phasetransition 3.4conclusions acknowledgments references 4metastabilityandtransientsinbraindynamics:problemsandrigorousresults valentins.afraimovich,mehmetk.muezzinogluand mikhaili.rabinovich 4.1introduction:whatwediscussandwhynow 4.1.1dynamicalmodelingofcognition 4.1.2brainimaging 4.1.3dynamicsofemotions 4.2mentalmodes 4.2.1statespace 4.2.2functionalworks 4.2.3emotion-cognitiontandem 4.2.4dynamicalmodelofconsciousness 4.3petition——robustnessandsensitivity 4.3.1transientsversusattractorsinbrain 4.3.2cognitivevariables 4.3.3emotionalvariables 4.3.4metastabilityanddynamicalprinciples 4.3.5winnerlesspetition——structuralstabilityoftransients 4.3.6examples:petitivedynamicsinsensorysystems 4.3.7stableheteroclinicchannels 4.4basicecologicalmodel 4.4.1thelotka-volterrasystem 4.4.2stressandhysteresis 4.4.3moodandcognition 4.4.4intermittentheteroclinicchannel 4.5conclusion acknowledgments appendix1 appendix2 references 5dynamicsofsolitonchains:fromsimpletoplexandchaoticmotions konstantina.gorshkov,leva.ostrovskyandyurya.stepanyants 5.1introduction 5.2stablesolitonlatticesandahierarchyofenvelopesolitons 5.3chainsofsolitonswithintheframeworkofthegardnermodel 5.4unstablesolitonlatticesandstochastisation 5.5solitonstochastisationandstrongwaveturbulenceinaresonatorwithexternalsinusoidalpumping 5.6chainsoftwo-dimensionalsolitonsinitive-dispersionmedia 5.7conclusion fewwordsinmemoryofgeorgem.zaslavsky references 6whatiscontrolofturbulenceincrossedfields?-donteventhinkofeliminatingallvortexes! dimitrivolchenkov 6.1introduction 6.2stochastictheoryofturbulenceincrossedfields:vortexesofallsizesdieout,butone 6.2.1themethodofrenormalizationgroup 6.2.2phenomenologyoffullydevelopedisotropicturbulence 6.2.3quantumfieldtheoryformulationofstochastiavier-stokesturbulence 6.2.4analyticalpropertiesoffeynmandiagrams 6.2.5ultravioletrenormalizationandrg-equations 6.2.6whatdothergrepresentationssum? 6.2.7stochasticmagichydrodynamics 6.2.8renormalizationgroupinmagichydrodynamics 6.2.9criticaldimensionsinmagichydrodynamics 6.2.10criticaldimensionsofiteoperatorsinmagichydrodynamics 6.2.11operatorsofthecanonicaldimensiond=2 6.2.12vectoroperatorsofthecanonicaldimensiond=3 6.2.13instabilityinmagichydrodynamics 6.2.14longlifetoeddiesofapreferablesize 6.3insearchofloststability 6.3.1phenomenologyoflong-rangeturbulenttransportinthescrape-offlayer(sol)ofthermonuclearreactors 6.3.2stochasticmodelsofturbulenttransportincross-fieldsystems 6.3.3iterativesolutionsincrossedfields 6.3.4functionalintegralformulationofcross-fieldturbulenttransport 6.3.5large-scaleinstabilityofiterativesolutions 6.3.6turbulencestabilizationbythepoloidalelectricdrift 6.3.7qualitativediscretetimemodelofanomaloustransportinthesol 6.4conclusion references 7entropyandtransportinbilliards m.courbageands.m.saberifathi 7.1introduction 7.2entropy 7.2.1entropyinthelorentzgas 7.2.2somedynamicalpropertiesofthebarrierbilliardmodel 7.3transport 7.3.1transportinlorentzgas 7.3.2transportinthebarrierbilliard 7.4concluremarks references index 内容简介: in memory of dr. george zalavky longrange interaction tochaticity and fractional dynamic cover the recent development of longrange interaction fractional dynamic brain dynamic and tochatic theory of turbulence each chapter wa written by etablihed cientit in the field. the book i dedicated to dr. george zalavky who wa one of three founder of the theory of hamiltonian chao. the book dicue elfimilarity and tochaticity and fractionality for dicrete and continuou dynamical ytem a well a longrange interaction and diluted work. a prehenive theory for brain dynamic i alo preented. in addition the plety and tochaticity for oliton chain and turbulence are addreed. the book i intended for reearcher in the field of nonlinear dynamic in mathematic phyic and engineering. dr. albert c.j. luo i a profeor at outhern illinoi univerity edwardville ua. dr. valentin afraimovich i a profeor at an lui potoi univerity meco. 本书介绍了连续及离散动力系统的自相似、及分数维。 作者简介: 编者:罗朝俊(墨西哥)阿弗莱诺维奇(valentinafraimovich)丛书主编:(瑞典)伊布拉基莫夫dr.albertc.j.luoiaprofeoratouthernillinoiuniverityedwardvilleua.dr.valentinafraimovichiaproieoratanluipotoiuniveritymeco.
相关推荐
Long-range Interactions, Stochasticity
全新 广州
¥
41.35
Long-range Interactions, Stochasticity
全新 广州
¥
43.35
Long-range Interactions, Stochasticity
全新 广州
¥
41.35
Long-range Interactions, Stochasticity
全新 广州
¥
43.35
Long-range Interactions, Stochasticity
全新 南京
¥
49.64
Long-range Interactions, Stochasticity
全新 保定
¥
47.54
Long-range Interactions, Stochasticity
全新 北京
¥
48.96
Long-range Interactions, Stochasticity
全新 无锡
¥
39.33
Long-range Interactions, Stochasticity
全新 天津
¥
43.05
Long-range Interactions, Stochasticity
全新 武汉
¥
49.64
— 没有更多了 —
以下为对购买帮助不大的评价