• 深度学习基础教程
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

深度学习基础教程

买书,就上二手书海官方企业店,标题和图片不符下单前请联系客服确认,不确认只发单本! ps:下午三点之前的订单当天发货,之后明天发货,特殊情况除外。

9.74 1.7折 59 八五品

库存2件

河南鹤壁
认证卖家担保交易快速发货售后保障

作者赵宏

出版社机械工业出版社

出版时间2021-08

版次1

装帧其他

货号wk-734220

上书时间2024-12-31

二手书海官方企业店

七年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
正版二手,几十万种图书无法都提供实拍图,但均为7-9成新,无缺页、会有瑕疵或者少许磨损 、或多或少都会有划线、笔记、涂写等,不影响使用。均不保证有光盘、卡片等,辅导习题类笔记较多;书籍有多封面的新老封面随机发货,内容一致,不影响使用,介意勿拍!图片孔网自动匹配,图片与标题不符时以及图片为套装,与标题不符时的下单前请咨询客服,望周知!
图书标准信息
  • 作者 赵宏
  • 出版社 机械工业出版社
  • 出版时间 2021-08
  • 版次 1
  • ISBN 9787111687320
  • 定价 59.00元
  • 装帧 其他
  • 开本 16开
  • 纸张 胶版纸
  • 页数 192页
  • 字数 300千字
【内容简介】
深度学习是当前的人工智能领域的技术热点。本书面向高等院校理工科专业学生的需求,介绍深度学习相关概念,培养学生研究、利用基于各类深度学习架构的人工智能算法来分析和解决相关专业问题的能力。本书内容包括深度学习概述、人工神经网络基础、卷积神经网络和循环神经网络、生成对抗网络和深度强化学习、计算机视觉以及自然语言处理。本书适合作为高校理工科相关专业深度学习、人工智能相关课程的教材,也适合作为技术人员的参考书或自学读物。
【作者简介】
赵宏,南开大学副教授,公共计算机基础教学部主任,“公共计算机基础课”教学团队带头人,南开大学教学名师,教育部在线教育研究中心“智慧教学之星”。近五年平均每周承担超过10课时的本科教学工作。2015年起在南开大学率先建设SPOC课程,进行混合式教学和翻转课堂的智慧教学实践。2018年在学堂在线上线两门MOOC课程, 2020年上线一门国家首批国际MOOC课程。主编教材11本,承担省部级、国家一级研究会及校级教改项目20余项,发表教学研究论文10余篇。获得南开大学教学成果二等奖4项。
【目录】
前言

第1章 深度学习概述  1

1.1 深度学习的发展历程  1

1.1.1 深度学习的历史  1

1.1.2 深度学习领域的重要人物  5

1.2 深度学习的关键技术  7

1.2.1 深度学习的机理  7

1.2.2 深度学习的三要素  8

1.2.3 数据的特征  9

1.2.4 深度学习的主要模型  10

1.2.5 深度学习模型的训练过程  11

1.2.6 深度学习模型的学习方式  12

1.2.7 深度学习的常用框架  14

1.3 深度学习网络的发展脉络及应用领域  18

1.3.1 深度学习网络的发展脉络  18

1.3.2 深度学习的应用领域  19

课后习题  21

参考文献  22

第2章 人工神经网络基础  24

2.1 人工神经网络的生物学基础  24

2.1.1 神经元的基本模型  24

2.1.2 突触的结构  26

2.2 人工神经元模型  26

2.2.1 人工神经元的数学模型  26

2.2.2 常见的人工神经元模型  30

2.3 人工神经网络模型  34

2.3.1 神经网络的基本结构  34

2.3.2 神经网络的分类  36

2.4 神经网络的前向传播机制  39

2.5 神经网络的反向传播机制  40

2.6 基于反向传播算法的神经网络设计流程  43

2.7 人工神经网络的参数优化问题  45

2.7.1 神经网络层数的优化问题  45

2.7.2 归一化指数函数softmax  47

2.7.3 学习率  49

2.7.4 欠拟合和过拟合问题  50

课后习题  52

参考文献  53

第3章 卷积神经网络和循环神经网络  54

3.1 卷积神经网络  54

3.1.1 卷积神经网络的基本概念  54

3.1.2 卷积神经网络的结构  58

3.1.3 卷积神经网络的常用架构  65

3.2 循环神经网络  72

3.2.1 循环神经网络的基本概念  72

3.2.2 循环神经网络的应用——语言模型  77

3.2.3 循环神经网络的梯度问题及解决方法  80

3.2.4 循环神经网络的改进  84

课后习题  87

参考文献  89

第4章 生成对抗网络和深度强化学习  92

4.1 生成对抗网络  92

4.1.1 生成对抗网络概述  92

4.1.2 生成对抗网络的基本原理  94

4.1.3 几种改进的生成对抗网络模型  99

4.1.4 生成对抗网络的应用  103

4.2 强化学习  106

4.2.1 强化学习概述  106

4.2.2 强化学习的决策过程  108

4.2.3 Q-Learning算法  111

4.2.4 深度强化学习  112

课后习题  118

参考文献  119

第5章 计算机视觉  121

5.1 计算机视觉概述  121

5.1.1 计算机视觉的历史  122

5.1.2 计算机视觉的挑战与机遇  123

5.1.3 计算机视觉常见的数据集  125

5.1.4 计算机视觉处理的基本流程  130

5.2 图像预处理  131

5.2.1 图像去噪  131

5.2.2 图像归一化  133

5.2.3 图像分割技术  134

5.3 计算机视觉常用的网络结构  136

5.3.1 图像分类常用的深度学习网络结构  136

5.3.2 视频分类常用的深度学习网络结构  140

5.3.3 目标检测常用的深度学习网络结构  144

课后习题  152

参考文献  154

第6章 自然语言处理  156

6.1 自然语言处理概述  156

6.1.1 发展历史  157

6.1.2 自然语言处理的过程  158

6.1.3 基础技术  160

6.1.4 词嵌入算法  162

6.1.5 N-gram语言模型  166

6.1.6 注意力机制  167

6.2 自然语言处理的应用模型  171

6.2.1 文本分类  171

6.2.2 自动文本摘要  175

6.2.3 自动问答系统  178

6.2.4 触发字检测  181

课后习题  182

参考文献  183
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

正版二手,几十万种图书无法都提供实拍图,但均为7-9成新,无缺页、会有瑕疵或者少许磨损 、或多或少都会有划线、笔记、涂写等,不影响使用。均不保证有光盘、卡片等,辅导习题类笔记较多;书籍有多封面的新老封面随机发货,内容一致,不影响使用,介意勿拍!图片孔网自动匹配,图片与标题不符时以及图片为套装,与标题不符时的下单前请咨询客服,望周知!
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP