国外数学名著系列(续一)(影印版)38:图像处理与分析
¥
25
2.8折
¥
88
八五品
仅1件
作者[美]陈繁昌 著
出版社科学出版社
出版时间2009-01
版次1
装帧精装
货号C2
上书时间2024-05-05
商品详情
- 品相描述:八五品
-
部分有铅笔划线
图书标准信息
-
作者
[美]陈繁昌 著
-
出版社
科学出版社
-
出版时间
2009-01
-
版次
1
-
ISBN
9787030234858
-
定价
88.00元
-
装帧
精装
-
开本
16开
-
纸张
胶版纸
-
页数
400页
-
字数
504千字
-
正文语种
英语
- 【内容简介】
-
ImageProcessingandAnalysis:Variational,PDE,Wavelet,andStochasticMethodsissystematicandwellorganized,Theauthorsfirstinvestigatethegeometric,functional,andatomicstructuresofimagesandthenrigorouslydevelopandanalyzeseveralimageprocessors.Thebookiscomprehensiveandintegrative,coveringthefourmostpowerfulclassesofmathematicaltoolsincontemporaryimageanalysisandprocessingwhileexploringtheirintrinsicconnectionsandintegration.Thematerialisbalancedintheoryandcomputation,followingasolidtheoreticalanalysisofmodelbuildingandperformancewithcomputationalimplementationandnumericalexamples.
Thisbookiswrittenforgraduatestudentsandresearchersinappliedmathematics,computerscience,electricalengineering,andotherdisciplineswhoareinterestedinproblemsinimagingandcomputervision.Itcanbeusedasareferencebyscientistswithspecifictasksinimageprocessing,aswellasbyresearcherswithageneralinterestinfindingoutaboutthelatestadvances.
- 【目录】
-
ListofFigures
Preface
1Introduction
1.1DawningoftheEraofImagingSciences
1.1.1ImageAcquisition
1.1.2ImageProcessing
1.1.3ImageInterpretationandVisualIntelligence
1.2ImageProcessingbyExamples
1.2.1ImageContrastEnhancement
1.2.2ImageDenoisirg
1.2.3ImageDeblurring
1.2.4ImageInpainting
1.2.5ImageSegmentation
1.3AnOverviewofMethodologiesinImageProcessing
1.3.1MorphologicalApproach
1.3.2FourierandSpectralAnalysis
1.3.3WaveletandSpace-ScaleAnalysis
1.3.4StochasticModeling
1.3.5VariaticnalMethods
1.3.6PartialDifferentialEquations(PDEs)
1.3.7DifferentApproachesAreIntrinsicallyInterconnected
1.4OrganizationoftheBook
1.5HowtoReadtheBcok
2SomeModernImageAnalysisTools
2.1GeometryofCurvesandSurfaces
2.1.IGeometryofCurves
2.1.2GeometryofSurfacesinThreeDimensions
2.1.3HausdorffMeasuresandDimensions
2.2FunctionswithBoundedVariations
2.2.1TotalVariatienasaRadonMeasure
2.2.2BasicPropertiesofBVFunctions
2.2.3TheCo-AreaFormula
2.3ElementsofThermodynamicsandStatisticalMechanics
2.3.1EssentialsofThermodynamics
2.3.2EntropyandPotentials
2.3.3StatisticalMechanicsofEnsembles
2.4BayesianStatisticalInference
2.4.1ImageProcessingorVisualPerceptionasInference
2.4.2BayesianInference:BiasDuetoPriorKnowledge
2.4.3BayesianMethodinImageProcessing
2.5LinearandNonlinearFilteringandDiffusion
2.5.1PointSpreadingandMarkovTransition
2.5.2LinearFilteringandDiffusion
2.5.3NonlinearFilteringandDiffusion
2.6WaveletsandMultiresolutionAnalysis
2.6.1QuestforNewImageAnalysisTools
2.6.2EarlyEdgeTheoryandMarr’sWavelets
2.6.3WindowedFrequencyAnalysisandGaborWavelets
2.6.4Frequency-WindowCoupling:Malvar-WilsonWavelets
2.6.5TheFrameworkofMultiresolutionAnalysis(MRA)
2.6.6FastImageAnalysisandSynthesisviaFilterBanks
3ImageModelingandRepresentation
3.1ModelingandRepresentation:What,Why,andHow
3.2DeterministicImageModels
3.2.1ImagesasDistributions(GeneralizedFunctions)
3.2.2LpImages
3.2.3SobolevImagesHn(Ω)
3.2.4BVImages
3.3WaveletsandMultiscaleRepresentation
3.3.1Constructionof2-DWavelets
3.3.2WaveletResponsestoTypicalImageFeatures
3.3.3BesovImagesandSparseWaveletRepresentation
3.4LatticeandRandomFieldRepresentation
3.4.1NaturalImagesofMotherNature
3.4.2ImagesasEnsemblesandDistributions
3.4.3ImagesasGibbs’Ensembles
3.4.4ImagesasMarkovRandomFields
3.4.5VisualFiltersandFilterBanks
3.4.6Entropy-BasedLearningofImagePatterns
3.5Level-SetRepresentation
3.5.1ClassicalLevelSets
3.5.2CumulativeLevelSets
3.5.3Level-SetSynthesis
3.5.4AnExample:LevelSetsofPiecewiseConstantImages
3.5.5HighOrderRegularityofLevelSets
3.5.6StatisticsofLevelSetsofNaturalImages
3.6TheMumford-ShahFreeBoundaryImageModel
3.6.1PiecewiseConstant1-DImages:AnalysisandSynthesis
3.6.2PiecewiseSmooth1-DImages:FirstOrderRepresentation
3.6.3PiecewiseSmoothI-DImages:PoissonRepresentation
3.6.4PiecewiseSmooth2-DImages
3.6.5TheMumford-ShahModel
3.6.6TheRoleofSpecialBVImages
4ImageDenoising
4.1Noise:Origins.Physics.andModels
4.l.1OriginsandPhysicsofNoise
4.1.2ABriefOverviewof1-DStochasticSignals
4.1.3StochasticModelsofNoises
4.1.4AnalogWhiteNoisesasRandomGeneralizedFunctions
4.1.5RandomSignalsfromStochasticDifferentialEquations
4.l.62-DStochasticSpatialSignals:RandomFields
4.2LinearDenoising:LowpassFiltering
4.2.1Signalvs.Noise
4.2.2DenoisingviaLinearFiltersandDiffusion
4.3Data-DrivenOptimalFiltering:WienerFilters
4.4WaveletShrinkageDenoising
4.4.1Shrinkage:Quasi-statisticalEstimationofSingletons
4.4.2Shrinkage:VariationalEstimationofSingletons
4.4.3DenoisingviaShrinkingNoisyWaveletComponents
4.4.4VariationalDenoisingofNoisyBesovImages
4.5VariationalDenoisingBasedonBVImageModel
4.5.1TV.RobustStatistics.andMedian
4.5.2TheRoleofTVandBVImageModel
4.5.3BiasedIteratedMedianFiltering
4.5.4Rudin.Osher.andFatemisTVDenoisingModel
4.5.5ComputationalApproachestoTVDenoising
4.5.6DualityfortheTVDenoisingModel
4.5.7SolutionStructuresoftheTVDenoisingModel
4.6DenoisingviaNonlinearDiffusionandScale-SpaceTheory
4.6.1PeronaandMaliksNonlinearDiffusionModel
4.6.2AxiomaticScale-SpaceTheory
4.7DenoisingSalt-and-PepperNoise
4.8MultichannelTVDenoising
4.8.1VariationalTVDenoisingofMultichannelImages
4.8.2ThreeVersionsofTV[u]
5ImageDeblurring
5.1Blur:PhysicalOriginsandMathematicalModels
5.1.1PhysicalOrigins
5.1.2MathematicalModelsofBlurs
5.1.3Linearvs.NonlinearBlurs
5.2Ill-posednessandRegularization
5.3DeblurringwithWienerFilters
5.3.1IntuitiononFilter-BasedDeblurring
5.3.2WienerFiltering
5.4DeblurringofBVImageswithKnownPSF
5.4.1TheVariationalModel
5.4.2ExistenceandUniqueness
5.4.3Computation
5.5VariationalBlindDeblurringwithUnknownPSF
5.5.1ParametricBlindDeblurring
5.5.2Parametric-Field-BasedBlindDeblurring
5.5.3NonparametricBlindDeblurring
6ImageInpainting
6.1ABriefReviewonClassicalInterpolationSchemes
6.1.1PolynomialInterpolation
6.1.2TrigonometricPolynomialInterpolation
6.1.3SplineInterpolation
6.1.4ShannonsSamplingTheorem
6.1.5RadialBasisFunctionsandThin-PlateSplines
6.2ChallengesandGuidelinesfor2-DImageInpainting
6.2.1MainChallengesforImageInpainting
6.2.2GeneralGuidelinesforImageInpainting
6.3InpaintingofSobolevImages:GreensFormulae
6.4GeometricModelingofCurvesandImages
6.4.1GeometricCurveModels
6.4.22-.3-PointAccumulativeEnergies.Length.andCurvature.
6.4.3ImageModelsviaFunctionalizingCurveModels
6.4.4ImageModelswithEmbeddedEdgeModels
6.5InpaintingBVImages(viatheTVRadonMeasure)
6.5.1FormulationoftheTVInpaintingModel
6.5.2JustificationofTVInpaintingbyVisualPerception
6.5.3ComputationofTVlnpainting
6.5.4DigitalZoomingBasedonTVInpainting
6.5.5Edge-BasedImageCodingviaInpainting
6.5.6MoreExamplesandApplicationsofTVInpainting
6.6ErrorAnalysisforImageInpainting
6.7InpaintingPiecewiseSmoothImagesviaMumfordandShah
6.8ImageInpaintingviaEulersElasticasandCurvatures
6.8.1InpaintingBasedontheElasticaImageModel
6.8.2InpaintingviaMumford-Shah-EulerImageModel
6.9InpaintingofMeyersTexture
6.10ImageInpaintingwithMissingWaveletCoefficients
6.11PDEInpainting:Transport.Diffusion.andNavier-Stokes
6.11.1SecondOrderInterpolationModels
6.11.2AThirdOrderPDEInpaintingModelandNavier-Stokes
……
7ImageSegmentation
Bibliography
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价