正版二手书,欢迎选购
¥ 20.75 1.7折 ¥ 119 九品
库存2件
作者[荷]马可·威宁(Marco Wiering),马丁·范·奥特罗(Martijn van Otterlo)
出版社机械工业出版社
ISBN9787111600220
出版时间2018-07
装帧平装
开本16开
定价119元
货号1060193803250024461
上书时间2024-11-12
马可 威宁(Marco Wiering)在荷兰格罗宁根大学人工智能系工作,他发表过各种强化学习主题的文章,研究领域包括强化学习、机器学习、深度学习、目标识别、文本学习,进化计算、机器人等。
马丁 范 奥特罗(Martijn van Otterlo)是荷兰奈梅亨大学认知人工智能小组的一员。主要研究领域是强化学习在环境中的知识表示。
序言
前言
作者清单
第一部分 绪论
第1章 强化学习和马尔可夫决策过程 2
1.1 简介 2
1.2 时序决策 3
1.2.1 接近时序决策 4
1.2.2 在线学习与离线学习 4
1.2.3 贡献分配 5
1.2.4 探索–运用的平衡 5
1.2.5 反馈、目标和性能 5
1.2.6 表达 6
1.3 正式的框架 6
1.3.1 马尔可夫决策过程 7
1.3.2 策略 9
1.3.3 最优准则和减量 9
1.4 价值函数和贝尔曼方程 10
1.5 求解马尔可夫决策过程 12
1.6 动态规划:基于模型的解决方案 13
1.6.1 基本的动态规划算法 13
1.6.2 高效的动态规划算法 17
1.7 强化学习:无模型的解决方案 19
1.7.1 时序差分学习 20
1.7.2 蒙特卡罗方法 23
1.7.3 高效的探索和价值更新 24
1.8 总结 27
参考文献 27
第二部分 高效的解决方案框架
第2章 批处理强化学习 32
2.1 简介 32
2.2 批处理强化学习问题 33
2.2.1 批处理学习问题 33
2.2.2 增长批处理学习问题 34
2.3 批处理强化学习算法的基础 34
2.4 批处理强化学习算法 37
2.4.1 基于核的近似动态规划 37
2.4.2 拟合Q迭代 39
2.4.3 基于最小二乘的策略迭代 40
2.4.4 识别批处理算法 41
2.5 批处理强化学习理论 42
2.6 批处理强化学习的实现 43
2.6.1 神经拟合Q迭代 44
2.6.2 控制应用中的神经拟合Q迭代算法 45
2.6.3 面向多学习器的批处理强化学习 46
2.6.4 深度拟合Q迭代 48
2.6.5 应用/发展趋势 49
2.7 总结 50
参考文献 50
第3章 策略迭代的最小二乘法 53
3.1 简介 53
3.2 预备知识:经典策略迭代算法 54
3.3 近似策略评估的最小二乘法 55
3.3.1 主要原则和分类 55
3.3.2 线性情况下和矩阵形式的方程 57
3.3.3 无模型算法的实现 60
3.3.4 参考文献 62
3.4 策略迭代的在线最小二乘法 63
3.5 例子:car-on-the-hill 64
3.6 性能保障 66
3.6.1 渐近收敛性和保证 66
3.6.2 有限样本的保证 68
3.7 延伸阅读 73
参考文献 74
第4章 学习和使用模型 78
4.1 简介 78
4.2 什么是模型 79
4.3 规划 80
4.4 联合模型和规划 82
4.5 样本复杂度 84
4.6 分解域 86
4.7 探索 88
4.8 连续域 91
4.9 实证比较 93
4.10 扩展 95
4.11 总结 96
参考文献 97
第5章 强化学习中的迁移:框架和概观 101
5.1 简介 101
5.2 强化学习迁移的框架和分类 102
5.2.1 迁移框架 102
5.2.2 分类 104
5.3 固定状态–动作空间中从源到目标迁移的方法 108
5.3.1 问题形式化 108
5.3.2 表示迁移 109
5.3.3 参数迁移 110
5.4 固定状态–动作空间中跨多任务迁移的方法 111
5.4.1 问题形式化 111
5.4.2 实例迁移 111
5.4.3 表示迁移 112
5.4.4 参数迁移 113
5.5 不同状态–动作空间中从源到目标任务迁移的方法 114
5.5.1 问题形式化 114
5.5.2 实例迁移 115
5.5.3 表示迁移 115
5.5.4 参数迁移 116
5.6 总结和开放性问题 116
参考文献 117
第6章 探索的样本复杂度边界 122
6.1 简介 122
6.2 预备知识 123
6.3 形式化探索效率 124
6.3.1 探索的样本复杂度和PAC-MDP 124
6.3.2 遗憾最小化 125
6.3.3 平均损失 127
6.3.4 贝叶斯框架 127
6.4 通用PAC-MDP定理 128
6.5 基于模型的方法 130
6.5.1 Rmax 130
6.5.2 Rmax的泛化 132
6.6 无模型方法 138
6.7 总结 141
参考文献 141
第三部分 建设性的表征方向
第7章 连续状态和动作空间中的强化学习 146
7.1 简介 146
7.1.1 连续域中的马尔可夫决策过程 147
7.1.2 求解连续MDP的方法 148
7.2 函数逼近 149
7.2.1 线性函数逼近 150
7.2.2 非线性函数逼近 153
7.2.3 更新参数 154
7.3 近似强化学习 157
7.3.1 数值逼近 157
7.3.2 策略逼近 162
7.4 双极车杆实验 168
7.5 总结 171
参考文献 171
第8章 综述:求解一阶逻辑马尔可夫决策过程 179
8.1 关系世界中的顺序决策简介 179
8.1.1 马尔可夫决策过程:代表性和可扩展性 180
8.1.2 简短的历史和与其他领域的联系 181
8.2 用面向对象和关系扩展马尔可夫决策过程 183
8.2.1 关系表示与逻辑归纳 183
8.2.2 关系型马尔可夫决策过程 184
8.2.3 抽象问题和求解 184
8.3 基于模型的解决方案 186
8.3.1 贝尔曼备份的结构 186
8.3.2 确切的基于模型的算法 187
8.3.3 基于近似模型的算法 190
8.4 无模型的解决方案 192
8.4.1 固定泛化的价值函数学习 192
8.4.2 带自适应泛化的价值函数 193
8.4.3 基于策略的求解技巧 196
8.5 模型、层级、偏置 198
8.6 现在的发展 201
8.7 总结和展望 203
参考文献 204
第9章 层次式技术 213
9.1 简介 213
9.2 背景 215
9.2.1 抽象动作 215
9.2.2 半马尔可夫决策问题 216
9.2.3 结构 217
9.2.4 状态抽象 218
9.2.5 价值函数分解 219
9.2.6 优化 220
9.3 层次式强化学习技术 220
9.3.1 选项 221
9.3.2 HAMQ学习 222
9.3.3 MAXQ 223
9.4 学习结构 226
9.5 相关工作和当前研究 228
9.6 总结 230
参考文献 230
第10章 针对强化学习的演化计算 235
10.1 简介 235
10.2 神经演化 237
10.3 TWEANN 239
10.3.1 挑战 239
10.3.2 NEAT 240
10.4 混合方法 241
10.4.1 演化函数近似 242
10.4.2 XCS 243
10.5 协同演化 245
10.5.1 合作式协同演化 245
10.5.2 竞争式协同演化 246
10.6 生成和发展系统 247
10.7 在线方法 249
10.7.1 基于模型的技术 249
10.7.2 在线演化计算 250
10.8 总结 251
参考文献 251
第四部分 概率模型
第11章 贝叶斯强化学习 260
11.1 简介 260
11.2 无模型贝叶斯强化学习 261
11.2.1 基于价值函数的算法 261
11.2.2 策略梯度算法 264
11.2.3 演员–评论家算法 266
11.3 基于模型的贝叶斯强化学习 268
11.3.1 由POMDP表述的贝叶斯强化学习 268
11.3.2 通过动态规划的贝叶斯强化学习 269
11.3.3 近似在线算法 271
11.3.4 贝叶斯多任务强化学习 272
11.3.5 集成先验知识 273
11.4 有限样本分析和复杂度问题 274
11.5 总结和讨论 275
参考文献 275
第12章 部分可观察的马尔可夫决策过程 279
12.1 简介 279
12.2 部分可观察环境中的决策 280
12.2.1 POMDP模型 280
12.2.2 连续和结构化的表达 281
12.2.3 优化决策记忆 282
12.2.4 策略和价值函数 284
12.3 基于模型的技术 285
12.3.1 基于MDP的启发式解决方案 285
12.3.2 POMDP的值迭代 286
12.3.3 确切的值迭代 288
12.3.4 基于点的值迭代方法 290
12.3.5 其他近似求解方法 291
12.4 无先验模型的决策 292
12.4.1 无记忆技术 292
12.4.2 学习内部记忆 292
12.5 近期研究趋势 294
参考文献 295
第13章 预测性定义状态表
— 没有更多了 —
以下为对购买帮助不大的评价