• 多维实分析(第1卷)
  • 多维实分析(第1卷)
  • 多维实分析(第1卷)
  • 多维实分析(第1卷)
  • 多维实分析(第1卷)
  • 多维实分析(第1卷)
21年品牌 40万+商家 超1.5亿件商品

多维实分析(第1卷)

正版,内页干净,无笔迹勾画。

90 九品

仅1件

北京东城
认证卖家担保交易快速发货售后保障

作者[荷兰]杜斯特马特 著

出版社世界图书出版公司

出版时间2009-08

版次1

装帧平装

货号W6

上书时间2020-12-31

霞河水

八年老店
已实名 进店 收藏店铺

   商品详情   

品相描述:九品
正版,内页干净,无笔迹勾画。
图书标准信息
  • 作者 [荷兰]杜斯特马特 著
  • 出版社 世界图书出版公司
  • 出版时间 2009-08
  • 版次 1
  • ISBN 9787510004520
  • 定价 49.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 422页
  • 正文语种 英语
【内容简介】
Thisbook,whichisintwoparts,providesanintroductiontothetheoryofvector-valuedfunctionsonEuclideanspace.Wefocusonfourmainobjectsofstudyandinadditionconsidertheinteractionsbetweenthese.VolumeIisdevotedtodifferentiation.DifferentiablefunctionsonRncomefirst,inChapters1through3.Next,differentiablemanifoldsembeddedinRarediscussed,inChapters4and5.InVolume11wetakeupintegration.Chapter6dealswiththetheoryofn-dimensionalintegrationoverR.Finally,inChapters7and8lower-dimensionalintegrationoversubmanifoldsofRnisdeveloped;particularattentionispaidtovectoranalysisandthetheoryofdifferentialforms,whicharetreatedindependentlyfromeachother.Generallyspeaking,theemphasisisongeometricaspectsofanalysisratherthanonmattersbelongingtofunctionalanalysis.
【目录】
VolumeⅠ
Preface
Acknowledgments
Introduction
1Continuity
1.1Innerproductandnorm
1.2Openandclosedsets
1.3Limitsandcontinuousmappings
1.4Compositionofmappings
1.5Homeomorphisms
1.6Completeness
1.7Contractions
1.8Compactnessanduniformcontinuity
1.9Connectedness

2Differentiation
2.1Linearmappings
2.2Differentiablemappings
2.3Directionalandpartialderivatives
2.4Chainrule
2.5MeanValueTheorem
2.6Gradient
2.7Higher-orderderivatives
2.8Taylor'sformula
2.9Criticalpoints
2.10Commutinglimitoperations

3InverseFunctionandImplicitFunctionTheorems
3.1Diffeomorphisms
3.2InverseFunctionTheorems
3.3ApplicationsoflnverseFunctionTheorems
3.4Implicitlydefinedmappings
3.5ImplicitFunctionTheorem
3.6ApplicationsoftheImplicitFunctionTheorem
3.7ImplicitandInverseFunctionTheoremsonC

4Manifolds
4.1Introductoryremarks
4.2Manifolds
4.3ImmersionTheorem
4.4Examplesofimmersions
4.5SubmersionTheorem
4.6Examplesofsubmersions
4.7Equivalentdefinitionsofmanifold
4.8Morse'sLemma

5TangentSpaces
5.1Definitionoftangentspace
5.2Tangentmapping
5.3Examplesoftangentspaces
5.4MethodofLagrangemultipliers
5.5Applicationsofthemethodofmultipliers
5.6Closerinvestigationofcriticalpoints
5.7Gaussiancurvatureofsurface
5.8CurvatureandtorsionofcurveinR3
5.9One-parametergroupsandinfinitesimalgenerators
5.10LinearLiegroupsandtheirLiealgebras
5.11Transversality
Exercises
ReviewExercises
ExercisesforChapter1
ExercisesforChapter2
ExercisesforChapter3
ExercisesforChapter4
ExercisesforChapter5
Notation
Index
VolumeⅡ
Preface
Acknowledgments
Introduction

6Integration
6.1Rectangles
6.2Riemannintegrability
6.3Jordanmeasurability
6.4Successiveintegration
6.5Examplesofsuccessiveintegration
6.6ChangeofVariablesTheorem:formulationandexamples
6.7Partitionsofunity
6.8ApproximationofRiemannintegrablefunctions
6.9ProofofChangeofVariablesTheorem
6.10AbsoluteRiemannintegrability
6.11Applicationofintegration:Fouriertransformation
6.12Dominatedconvergence
6.13Appendix:twootherproofsofChangeofVariablesTheorem

7IntegrationoverSubmanifolds
7.1Densitiesandintegrationwithrespecttodensity
7.2AbsoluteRiemannintegrabilitywithrespecttodensity
7.3Euclideand-dimensionaldensity
7.4ExamplesofEuclideandensities
7.5Opensetsatonesideoftheirboundary
7.6Integrationofatotalderivative
7.7Generalizationsoftheprecedingtheorem
7.8Gauss'DivergenceTheorem
7.9ApplicationsofGauss'DivergenceTheorem

8OrientedIntegration
8.1Lineintegralsandpropertiesofvectorfields
8.2Antidifferentiation
8.3Green'sandCauchy'sIntegralTheorems
8.4Stokes'IntegralTheorem
8.5ApplicationsofStokes'IntegralTheorem
8.6Apotheosis:differentialformsandStokes'Theorem.
8.7Propertiesofdifferentialforms
8.8Applicationsofdifferentialforms
8.9HomotopyLemma
8.10Poincare'sLemma
8.11Degreeofmapping
Exercises
ExercisesforChapter6
ExercisesforChapter7
ExercisesforChapter8
Notation
Index
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

正版,内页干净,无笔迹勾画。
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP