• 仿生智能水凝胶
  • 仿生智能水凝胶
  • 仿生智能水凝胶
  • 仿生智能水凝胶
  • 仿生智能水凝胶
21年品牌 40万+商家 超1.5亿件商品

仿生智能水凝胶

全新正版现货

79 5.0折 158 全新

仅1件

四川成都
认证卖家担保交易快速发货售后保障

作者李明、赵润、李维军、管晴雯 编著

出版社化学工业出版社

ISBN9787122442130

出版时间2024-01

装帧平装

开本16开

纸张胶版纸

定价158元

货号29658098

上书时间2024-07-28

龙香书城

八年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
正版全新
商品描述

编辑推荐】:

1.全面、系统地介绍了仿生智能水凝胶的相关知识; 2.介绍了仿生智能水凝胶的前沿研究进展、制备方法、应用成果; 3.四色印刷,高清大图,给读者以直观的感受。



内容简介】:

本书从构建水凝胶的常见高分子着手,系统阐述了水凝胶的主要合成方法、内部的主要交联类型以及高分子网络的结构特征;详细介绍了功能性水凝胶力学性能和物理特性的设计原理以及相应的调控方法;进一步展开介绍了受自然界中刺激- 响应驱动行为启发而构建的仿生智能水凝胶软执行器及其应用;特别关注了近几年兴起的自供能水凝胶传感器,详细阐述了相应的供能机制和应用领域;后简要说明了该领域当前的挑战以及未来的发展方向。本书可供材料、化学化工、机械、生物科技、人工智能等专业领域,尤其是仿生功能材料、响应性水凝胶、柔性传感器、可穿戴设备等研究领域的人员参考,亦可作为高等院校相关专业的教材,还可作为仿生爱好者的科普读物。



作者简介】:



目录】:

第1章 绪论 001 
参考文献 007 

第2章 构建水凝胶的常见高分子 012 
2.1 天然高分子 013 
2.1.1 多糖类 013 
2.1.2 蛋白质类 016 
2.1.3 多肽类 017 
2.1.4 核酸类 019 
2.2 合成高分子 020 
2.2.1 聚丙烯及其衍生物类 020 
2.2.2 聚醇类 021 
2.2.3 其他类 022 
参考文献 023 

第3章 水凝胶的合成方法 040 
3.1 由温度引起的高分子链纠缠 041 
3.2 分子自组装 042 
3.3 离子凝胶化/ 静电相互作用 043 
3.4 化学交联 044 
3.5 小结 045 
参考文献 045 

第4章 水凝胶内部的主要交联类型 048 
4.1 永久共价交联 049 
4.1.1 碳- 碳键 050 
4.1.2 碳- 氮键 050 
4.1.3 碳- 氧键 051 
4.1.4 碳- 硫键 051 
4.1.5 硅- 氧键 051 
4.2 强物理交联 051 
4.2.1 晶畴 052 
4.2.2 玻璃状结节 052 
4.2.3 螺旋关联 053 
4.3 弱物理交联 053 
4.3.1 氢键 053 
4.3.2 静电相互作用 054 
4.3.3 配位络合 055 
4.3.4 主客体相互作用 055 
4.3.5 疏水缔合 056 
4.3.6 π-π 堆积 057 
4.4 动态共价交联 057 
4.4.1 亚胺键 058 
4.4.2 硼酸酯键 058 
4.4.3 二硫键 059 
4.4.4 腙键 059 
4.4.5 肟键 060 
4.4.6 可逆Diels-Alder 反应 060 
参考文献 061 

第5章 水凝胶高分子网络的结构特征 077 
5.1 弹性体水凝胶 078 
5.1.1 干燥状态下的弹性高分子网络 078 
5.1.2 溶胀状态下的弹性高分子网络 080 
5.2 非弹性体水凝胶 082 
5.2.1 理想高分子网络 083 
5.2.2 含有滑动交联点的高分子网络 083 
5.2.3 互穿和半互穿高分子网络 084 
5.2.4 具有高官能交联的高分子网络 085 
5.2.5 微纳纤维高分子网络 085 
5.2.6 其他非常规高分子网络 086 
5.3 由非常规高分子网络结构引起的力学性能分离 086 
5.4 非常规高分子网络结构和相互作用的协同效应 089 
参考文献 090 

第6章 水凝胶限力学性能的设计原理和调控方法 097 
6.1 韧性:在可拉伸高分子网络中引入能量耗散机制 098 
6.1.1 断裂韧性 098 
6.1.2 坚韧水凝胶的设计原则 099 
6.1.3 坚韧水凝胶的实施策略 100 
6.2 强度:让高分子网络内部有足够多的分子链能够同时硬化且断裂 103 
6.2.1 抗拉强度 103 
6.2.2 抗拉伸水凝胶的设计原则 104 
6.2.3 抗拉伸水凝胶的实施策略 105 
6.3 弹性:降低水凝胶在一定变形范围内的机械耗散 1076.3.1 弹性 107 
6.3.2 高弹性水凝胶的设计原则 107 
6.3.3 高弹性水凝胶的实施策略 109 
6.4 韧性黏结:整合具有机械耗散的增韧水凝胶基体与高强界面的交联 111 
6.4.1 界面韧性 111 
6.4.2 强界面黏附性水凝胶的设计原则 112 
6.4.3 强界面黏附性水凝胶的实施策略 113 
6.5 抗疲劳:用具有高本征断裂能的物质去阻碍疲劳裂纹扩展 115 
6.5.1 疲劳阈值 115 
6.5.2 抗疲劳水凝胶的设计原则 116 
6.5.3 抗疲劳水凝胶的实施策略 117 
6.6 抗疲劳粘接:在界面处强力固定具有高本征断裂能的物质 119 
6.6.1 界面疲劳阈值 119 
6.6.2 抗疲劳黏附水凝胶的设计原则 120 
6.6.3 抗疲劳黏附水凝胶的实施策略 121 
参考文献 122 

第7章 水凝胶功能特性的设计原理和调控方法 130 
7.1 导电性:形成连通的电子导电相 131 
7.2 磁性:嵌入磁性颗粒并形成铁磁磁畴 132 
7.3 折射率和透明度:均匀嵌入高折射率且无散射的纳米相 133 
7.4 可调控声阻抗:等效均质水凝胶的密度和体积模量的调控 133 
7.5 自愈性:在损伤区域形成新的交联或高分子链 134 
7.6 可注射性:选择具有剪切变稀和自我修复特性的材料 136 
参考文献 137 

第8章 水凝胶的动态模拟 141 
8.1 光图案化和光化降解法 142 
8.2 动态光度图形法 143 
8.3 细胞响应反馈系统法 144 
8.4 刺激响应——形态变形法 145 
8.5 细胞介导牵引力引起的形态变形法 146 
参考文献 147 

第9章 仿生智能水凝胶软执行器及其应用 150 
9.1 自然界中的刺激- 响应驱动行为 151 
9.1.1 基于细胞渗透压变化实现的驱动行为 152 
9.1.2 基于纤维素原纤维结构不均匀膨胀实现的驱动行为 153 
9.1.3 基于可逆弱键的断裂/ 生成实现的驱动行为 153 
9.1.4 基于微观结构变化实现的驱动行为 154 
9.1.5 基于软结构的收缩/ 拉伸实现的驱动行为 155 
9.2 人造刺激- 响应性水凝胶执行器 155 
9.2.1 热响应 156 
9.2.2 光响应 161 
9.2.3 磁响应 165 
9.2.4 电响应 167 
9.2.5 pH 响应 170 
9.2.6 离子响应 172 
9.2.7 湿度响应 173 
9.2.8 溶剂响应 175 
9.2.9 其他响应 176 
9.3 仿生智能水凝胶执行器的应用 178 
9.3.1 软执行器 179 
9.3.2 流体操控 187 
9.3.3 医学工程 191 
参考文献 195 

第10章 仿生自供能水凝胶传感器 205 
10.1 自供能水凝胶传感器的供能机制 206 
10.1.1 摩擦纳米发电 207 
10.1.2 压电纳米发电 208 
10.1.3 热电纳米发电 209 
10.1.4 光伏发电 209 
10.1.5 水伏发电 210 
10.1.6 磁电发电 211 
10.1.7 混合发电 211 
10.2 自供能水凝胶传感器的典型应用 212 
10.2.1 物理传感 212 
10.2.2 健康护理 215 
10.2.3 环境监测 217 
参考文献 219 

第11章 总结与展望 222 
11.1 仿生智能水凝胶软执行器 223 
11.2 自供能水凝胶传感器 224


—  没有更多了  —

以下为对购买帮助不大的评价

正版全新
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP