• 文本数据挖掘
  • 文本数据挖掘
  • 文本数据挖掘
  • 文本数据挖掘
  • 文本数据挖掘
  • 文本数据挖掘
  • 文本数据挖掘
  • 文本数据挖掘
21年品牌 40万+商家 超1.5亿件商品

文本数据挖掘

全新正版现货

54.2 7.2折 75 全新

仅1件

四川成都
认证卖家担保交易快速发货售后保障

作者宗成庆、夏睿、张家俊

出版社清华大学出版社

ISBN9787302519904

出版时间2019-06

装帧平装

开本16开

纸张胶版纸

定价75元

货号27890400

上书时间2024-07-26

龙香书城

八年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
正版全新
商品描述

编辑推荐】:
随着计算机网络和移动通信技术的快速发展和普及,面向网络或移动终端用户的文本大数据挖掘技术越来越多地受到各个领域的高度关注,具有其广阔的应用,同时这项研究涉及机器学习、自然语言处理和人工智能等多个领域和学科,开展这项研究对于推动相关学科的发展具有重要的理论意义。
 本书阐述文本数据挖掘的理论模型、实现算法和相关应用,通过实例从原理上对相关技术的理论方法和实现算法进行阐述,言简意赅,深入浅出,使读者能够在充分理解基本原理的基础上掌握应用系统的实现方法。
本书列入“中国科学院大学研究生教学辅导书系列”,可作为大学高年本科生或研究生从事相关研究的入门文献,也可作为从事相关技术研发的开发人员的参考资料。

内容简介】:
本书阐述文本数据挖掘的理论模型、实现算法和相关应用,主要内容包括:信息抽取和知识库构建、文本聚类、情感文本分析、热点发现、生物医学文本挖掘和多文档自动摘要等。写作风格力求言简意赅,深入浅出,通过实例说明实现相关任务的理论方法和技术思路,而不过多地涉及实现细节。本书可作为大学高年本科生或研究生从事相关研究的入门文献,也可作为从事相关技术研发的开发人员的参考资料。

作者简介】:
宗成庆,中国科学院自动化研究所研究员,博士生导师。主要从事自然语言处理、机器翻译和文本情感分析等相关研究,主持国家科研项目10余项,发表论文150余篇,出版专著一部、译著一部。2013年获国务院政府特殊津贴,2014年获钱伟长中文信息处理科学技术奖一等奖(*获奖人),现为国际计算语言学委员会(ICCL)委员,2015年担任本领域国际*会议ACL-IJCNLP 程序委员会共同主席(PC Co-chair),是多个国际学术期刊的编委或副主编(Associate Editor)。 

夏睿,南京理工大学副教授,硕士生导师。主要从事自然语言处理、机器学习、情感分析与观点挖掘等方面的研究工作,在领域*期刊和会议上(如IEEE TKDE、IEEE IS、INS、IPM、IJCAI、AAAI、ACL、COLING等)发表论文20余篇,曾任多个国际*会议和研讨会(如IJCAI、ACL、SENTIRE、WISDOM、MABSDA)的程序委员会委员和 Session Chair,并担任多个国际期刊(如IEEE TKDE、DMKD、IEEE IS、IEEE CIM、ACM TALIP、CogCom、JCST、计算机学报、自

目录】:
第 1章绪论 .1 

1.1基本概念 1 

1.2文本挖掘任务 .2 

1.3文本挖掘面临的困难 .5 

1.4方法概述与本书的内容组织 .7 

1.5进一步阅读 .9

第 2章数据预处理和标注 . 11 

2.1数据获取  11 

2.2数据预处理 . 15 

2.3数据标注  17 

2.4基本工具  19 

2.4.1汉语自动分词与词性标注  19 

2.4.2句法分析 . 20 

2.4.3 n元语法模型 . 21 

2.5进一步阅读 . 22

第 3章文本表示 . 23 

3.1向量空间模型 . 23 

3.1.1向量空间模型的基本概念  23 

3.1.2特征项的构造与权重 . 24 

3.1.3文本长度规范化 . 25 

3.1.4特征工程 . 26 

3.1.5其他文本表示方法  27 

3.2词的分布式表示  29 

3.2.1神经网络语言模型  29 

3.2.2 C&W模型 . 32 

3.2.3 CBOW与 Skip-gram模型  34 

3.2.4噪声对比估计与负采样 . 35 

3.2.5字词混合的分布式表示方法 . 37 

3.3短语的分布式表示 . 38 

3.3.1基于词袋的分布式表示 . 39 

3.3.2基于自动编码器的分布式表示 . 39 

3.4句子的分布式表示 . 42 

3.4.1通用的句子表示 . 42 

3.4.2任务相关的句子表示 . 45 

3.5文档的分布式表示 . 48 

3.5.1通用的文档分布式表示 . 48 

3.5.2任务相关的文档分布式表示 . 49 

3.6进一步阅读 . 52

第 4章文本分类 . 53 

4.1概述 . 53 

4.2传统文本表示 . 54 

4.3特征选择  55 

4.3.1互信息法 . 55 

4.3.2信息增益法  58 

4.3.3卡方统计量法 . 59 

4.3.4其他方法 . 60 

4.4传统分类算法 . 61 

4.4.1朴素贝叶斯模型 . 61 

4.4.2 Logistic回归、 Softmax回归与*熵模型 . 63 

4.4.3支持向量机  65 

4.4.4集成学习 . 67 

4.5深度神经网络方法 . 68 

4.5.1多层前馈神经网络  68 

4.5.2卷积神经网络 . 69 

4.5.3循环神经网络 . 71 

4.6文本分类性能评估 . 78 

4.7进一步阅读 . 81

第 5章文本聚类 . 83 

5.1概述 . 83 

5.2文本相似性度量  83 

5.2.1样本间的相似性 . 83 

5.2.2簇间的相似性 . 86 

目录 IX 
5.2.3样本与簇之间的相似性 . 87 

5.3文本聚类算法 . 87 

5.3.1 K-均值聚类 . 87 

5.3.2单遍聚类 . 91 

5.3.3层次聚类 . 92 

5.3.4密度聚类 . 95 

5.4性能评估  97 

5.4.1外部标准 . 97 

5.4.2内部标准 . 99 

5.5进一步阅读 . 99

第 6章主题模型 . 101 

6.1概述 . 101 

6.2潜在语义分析 . 102 

6.2.1奇异值分解  102 

6.2.2词项 -文档矩阵的奇异值分解  103 

6.2.3词项和文档的概念表示及相似度计算 . 104 

6.3概率潜在语义分析 . 106 

6.3.1模型假设 . 106 

6.3.2参数学习 . 107 

6.4潜在狄利克雷分布 . 108 

6.4.1模型假设 . 108 

6.4.2词项和主题序列的联合概率 . 110 

6.4.3模型推断 . 112 

6.4.4新文档的推断 . 114 

6.4.5 PLSA与 LDA的联系与区别 . 115 

6.5进一步阅读 . 115

第 7章情感分析与观点挖掘  117 

7.1概述 . 117 

7.2情感分析任务类型 . 118 

7.2.1按目标形式划分 . 118 

7.2.2按分析粒度划分 . 119 

7.3文档或句子情感分析方法 . 121 

7.3.1基于规则的无监督情感分类 . 122 

7.3.2基于传统机器学习的监督情感分类 . 123 

7.3.3深度神经网络方法  126 

文本数据挖掘 
7.4词语情感分析与情感词典构建 . 131 

7.4.1基于语义知识库的方法 . 131 

7.4.2基于语料库的方法  131 

7.4.3情感词典性能评估  134 

7.5属性情感分析  134 

7.5.1属性抽取 . 135 

7.5.2属性情感分类 . 138 

7.5.3主题与情感的生成式建模  141 

7.6情感分析中的特殊问题  143 

7.6.1情感性转移问题  143 

7.6.2领域适应问题 . 145 

7.7进一步阅读 . 147

第 8章话题检测与跟踪 . 149 

8.1概述 . 149 

8.2术语与任务 . 151 

8.2.1术语  151 

8.2.2任务  152 

8.3报道或话题的表示与相似性计算 . 154 

8.4话题检测  156 

8.4.1话题在线检测 . 157 

8.4.2话题回溯检测 . 158 

8.5话题跟踪  159 

8.6评估方法  160 

8.7社交媒体话题检测与跟踪 . 161 

8.7.1社交媒体话题检测  162 

8.7.2社交媒体话题跟踪  163 

8.8突发话题检测 . 163 

8.8.1突发状态识别 . 164 

8.8.2以文档为中心的方法:先检测话题后评估突发性 . 167 

8.8.3以特征为中心的方法:先识别突发特征后生成突发话题 . 168 

8.9进一步阅读 . 169

第 9章信息抽取 . 171 

9.1概述 . 171 

9.2命名实体识别 . 173 

9.2.1基于规则的命名实体识别方法 . 174 

目录 XI 
9.2.2有监督的命名实体识别方法 . 175 

9.2.3半监督的命名实体识别方法 . 181 

9.2.4命名实体识别方法评价 . 183 

9.3共指消解  184 

9.3.1基于规则的共指消解方法  185 

9.3.2数据驱动的共指消解方法  187 

9.3.3共指消解评价 . 190 

9.4实体消歧  193 

9.4.1基于聚类的实体消歧方法  193 

9.4.2基于链接的实体消歧 . 197 

9.4.3实体消歧任务的评价方法  203 

9.5关系抽取  204 

9.5.1基于离散特征的关系分类方法 . 206 

9.5.2基于分布式特征的关系分类方法  212 

9.5.3基于远程监督的关系分类方法 . 214 

9.5.4关系分类性能评价  215 

9.6事件抽取  215 

9.6.1事件描述模板 . 215 

9.6.2事件抽取方法 . 217 

9.6.3事件抽取评价 . 224 

9.7进一步阅读 . 224

第 10章文本自动摘要  227 

10.1概述 . 227 

10.2抽取式自动摘要  228 

10.2.1句子重要性评估  229 

10.2.2基于约束的摘要生成方法 . 237 

10.3压缩式自动摘要方法  238 

10.3.1句子压缩方法  238 

10.3.2基于句子压缩的自动摘要方法  242 

10.4生成式自动摘要  244 

10.4.1基于信息融合的生成式摘要方法 . 244 

10.4.2基于编码 -解码的生成式摘要方法  249 

10.5基于查询的自动摘要  251 

10.5.1基于语言模型的相关性计算方法 . 251 

10.5.2基于关键词语重合度的相关性计算方法 . 252 

10.5.3基于图模型的相关性计算方法  252 

10.6跨语言和多语言自动摘要方法  253 

10.6.1跨语言自动摘要  253 

10.6.2多语言自动摘要  256 

10.7摘要质量评估方法和相关评测  258 

10.7.1摘要质量评估方法 . 258 

10.7.2相关评测活动  262 

10.8进一步阅读 . 263

参考文献 . 265

名词术语索引 . 285 

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

正版全新
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP