• 集成学习:基础与算法
21年品牌 40万+商家 超1.5亿件商品

集成学习:基础与算法

书籍均为精品二手图书品相85品以上,出库会经过高温消毒,书籍上架都会检测可保证正版!!

17.5 2.0折 89 九品

库存3件

天津宝坻
认证卖家担保交易快速发货售后保障

作者周志华

出版社"电子工业出版社

ISBN9787121390777

出版时间2020

装帧其他

开本16开

纸张胶版纸

定价89元

货号1284051532383256797

上书时间2024-09-15

粤读二手书店

七年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
本店所售书籍均精品二手正版书书籍,严格审核品相为85品以上,出库会经过高温消毒,由于成本增加,所售书籍价格略高,运费首本5元,每增加一本运费加2元,每天下午2点前订单一般当天发出,最迟48小时内发出,二手书不保证100%没有任何笔记,有时会出现缺货现象,我们会第一时间告知您,感谢理解与支持。
商品描述
以下信息以网上匹配仅供参考,不支持以此为由退款
内容简介:

                                        集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。全书分为三部分。*部分主要介绍集成学习的背景知识;第二部分主要介绍集成学习方法的核心知识,包括Boosting、Bagging、Random Forests等经典算法,平均、投票和Stacking等模型和方法、相关理论分析工作,以及多样性度量和增强方面的进展。第三部分介绍集成学习方法的进阶议题,包括集成修剪、聚类集成和集成学习方法在半监督学习、主动学习、代价敏感学习、类别不平衡学习,以及提升可理解性方面的进展。此外,本书还在每章中的“拓展阅读”部分提供了相关的进阶内容。本书适合对集成学习方法感兴趣的研究人员、学生和实践者阅读。                                   
目录:

                                        第1章 绪 论 1 

1.1 基本概念 1 

1.2 常用学习算法 3 

1.2.1 线性判别分析 3 

1.2.2 决策树 4 

1.2.3 神经网络 6 

1.2.4 朴素贝叶斯 8 

1.2.5 k-近邻 9 

1.2.6 支持向量机和核方法 9 

1.3 评估和对比 12 

1.4 集成学习方法 14 

1.5 集成学习方法的应用 16 

1.6 拓展阅读 19 

第2章Boosting 21 

2.1 Boosting 过程 21 

2.2 AdaBoost 算法 22 

2.3 说明性举例 26 

2.4 理论探讨 29 

2.4.1 基本分析 29 

2.4.2 间隔解释 30 

2.4.3 统计视角 32 

2.5 多分类问题 35 

2.6 容噪能力 37 

2.7 拓展阅读 40 

第3章Bagging 43 

3.1 两种集成范式 43 

3.2 Bagging 算法 44 

3.3 说明性举例 45 

3.4 理论探讨 48 

3.5 随机树集成 52 

3.5.1 随机森林 52 

3.5.2 随机化谱 55 

3.5.3 随机森林用于密度估计 56 

3.5.4 随机森林用于异常检测 58 

3.6 拓展阅读 60 

第4章结合方法 61 

4.1 结合带来的益处 61 

4.2 均值法 62 

4.2.1 简单平均法 62 

4.2.2 加权平均法 63 

4.3 投票法 65 

4.3.1 绝对多数投票法 65 

4.3.2 相对多数投票法 66 

4.3.3 加权投票法 67 

4.3.4 软投票法 68 

4.3.5 理论探讨 70 

4.4 学习结合法 76 

4.4.1 Stacking 76 

4.4.2 无限集成 78 

4.5 其他结合方法 79 

4.5.1 代数法 80 

4.5.2 行为知识空间法 81 

4.5.3 决策模板法 81 

4.6 相关方法 82 

4.6.1 纠错输出编码法 82 

4.6.2 动态分类器选择法 85 

4.6.3 混合专家模型 86 

4.7 拓展阅读 87 

第5章多样性 91 

5.1 集成多样性 91 

5.2 误差分解 92 

5.2.1 误差-分歧分解 92 

5.2.2 偏差-方差-协方差分解 94 

5.3 多样性度量 96 

5.3.1 成对度量 96 

5.3.2 非成对度量 97 

5.3.3 小结和可视化 100 

5.3.4 多样性度量的局限 101 

5.4 信息论多样性 102 

5.4.1 信息论和集成 102 

5.4.2 交互信息多样性 103 

5.4.3 多信息多样性 104 

5.4.4 估计方法 105 

5.5 多样性增强 106 

5.6 拓展阅读 108 

第6章集成修剪 109 

6.1 何谓集成修剪 109 

6.2 多比全好 110 

6.3 修剪方法分类 113 

6.4 基于排序的修剪 114 

6.5 基于聚类的修剪 117 

6.6 基于优化的修剪 117 

6.6.1 启发式优化修剪 118 

6.6.2 数学规划修剪 118 

6.6.3 概率修剪 121 

6.7 拓展阅读 122 

第7章聚类集成 125 

7.1 聚类 125 

7.1.1 聚类方法 125 

7.1.2 聚类评估 127 

7.1.3 为什么要做聚类集成 129 

7.2 聚类集成方法分类 130 

7.3 基于相似度的方法 132 

7.4 基于图的方法 133 

7.5 基于重标记的方法 136 

7.6 基于变换的方法 140 

7.7 拓展阅读 143 

第8章进阶议题 145 

8.1 半监督学习 145 

8.1.1 未标记数据的效用 145 

8.1.2 半监督学习的集成学习方法 146 

8.2 主动学习 151 

8.2.1 人为介入的效用 151 

8.2.2 基于集成的主动学习 152 

8.3 代价敏感学习 153 

8.3.1 不均等代价下的学习 153 

8.3.2 代价敏感学习的集成方法 154 

8.4 类别不平衡学习 158 

8.4.1 类别不平衡 158 

8.4.2 类别不平衡学习的性能评估 160 

8.4.3 类别不平衡学习的集成方法 163 

8.5 提升可解释性 166 

8.5.1 集成约简 166 

8.5.2 规则抽取 167 

8.5.3 可视化 168 

8.6 未来的研究方向 169 

8.7 拓展阅读 171 

参考文献 173 

索引 203                                    

—  没有更多了  —

以下为对购买帮助不大的评价

本店所售书籍均精品二手正版书书籍,严格审核品相为85品以上,出库会经过高温消毒,由于成本增加,所售书籍价格略高,运费首本5元,每增加一本运费加2元,每天下午2点前订单一般当天发出,最迟48小时内发出,二手书不保证100%没有任何笔记,有时会出现缺货现象,我们会第一时间告知您,感谢理解与支持。
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP