笔记很少,整体很新,若有质量问题,支持退换货,售后无忧
¥ 36.82 2.5折 ¥ 149 八五品
仅1件
作者[美]Adrian、Kaehler、Gary、Bradski 著
出版社清华大学出版社
出版时间2018-07
版次1
装帧平装
货号9787302504184
上书时间2024-08-18
计算机视觉是在图像处理的基础上发展起来的新兴学科。OpenCV是一个开源的计算机视觉库,是英特尔公司资助的两大图像处理利器之一。它为图像处理、模式识别、三维重建、物体跟踪、机器学习和线性代数提供了各种各样的算法。
《学习OpenCV 3(中文版)》由OpenCV发起人所写,站在一线开发人员的角度用通俗易懂的语言解释了OpenCV的缘起和计算机视觉基础结构,演示了如何用OpenCV和现有的自由代码为各种各样的机器进行编程,这些都有助于读者迅速入门并渐入佳境,兴趣盎然地深入探索计算机视觉领域。
《学习OpenCV 3(中文版)》可作为信息处理、计算机、机器人、人工智能、遥感图像处理、认知神经科学等有关专业的高年级学生或研究生的教学用书,也可供相关领域的研究工作者参考。
作者简介
安德里安•凯勒(Adrian Kaehler)博士,企业家,硅谷深度学习小组创始人。他的工作重心包括机器学习、统计建模、计算机视觉和机器人。他就职于斯坦福大学人工智能实验室,他还是该校斯坦利团队的成员,该团队在美国国家航空与航天局(NASA)主办的机器人挑战赛中胜出,赢得了200万美元的大奖。
加里•布拉德斯基(Gary Bradski)博士是Arraiy.ai的首席架构师(CTO),他曾经就职于好几个创业公司,担任过斯坦福大学计算机系人工智能实验室的顾问教授。他是OpenCV库的创始人,是一名享有广泛声誉的演讲人、开源社区的积极参与者。
译者团队介绍
阿丘科技
阿丘科技是一家以机器学习、3D 视觉和机器人技术为核心的高科技企业,拥有业内领先的机器人3D 视觉技术、机器学习算法及标准行业解决方案。
人工智能,已经成为全球技术发展、应用拓展的前沿领域,也是带领未来的一枚关键的棋子。计算机视觉作为人工智能的关键应用点之一,近年来兴起的创业公司主要集中在人脸识别、无人驾驶、增强现实等领域。而阿丘科技独辟蹊径,将人工智能技术与机器人结合,将其应用于工业自动化领域,并在短短一年内在多个场景下落地,取得了出色的成果。
相较于传统的机器视觉,阿丘科技将深度学习用于工业视觉检测,在缺陷检测分类等场景下具有突出优势。而三维计算机视觉与机器人的结合,更是极大地扩展了工业机器人的应用场景。凭借国际的技术人才,领先的计算机视觉、机器人技术,阿丘科技走在了智能工业视觉技术的前列。随着人工智能和智能制造行业的兴起,我司将助力中国工业自动化以及智能化的发展。
尽管由于某些原因,OpenCV并没有在正式版本中提供自身完备的深度学习工具(我们很高兴这一点在3.3 版本中有了巨大改善),但是OpenCV作为从事机器视觉应用技术开发的必备工具,同样,也是阿丘科技技术开发的基础工具之一,有着不可替代的作用。在很多固定场景下,基于OpenCV等视觉工具的开发的算法依然具有极大的应用潜力。尤其是对于初学者而言,我们还是非常推荐使用OpenCV完成一些视觉项目,而不是直接用深度学习构建空中楼阁。我司能够在一年内推出经受复杂应用场景检验、市场普遍认可的产品,有一大份功劳,也归属于OpenCV对项目完成和开发研究的推动。高效、精准、便捷等诸多特质,使得OpenCV在学术研究和商业应用中占据了重要地位。
阿丘科技致力于构建领先的智能机器人视觉平台,以视觉为切入点,将 AI 与机器人结合。创始团队源自清华大学计算机系人工智能实验室,聚集了来自清华、CMU 等全球高等院校的人才,以及工业机器人和自动化资深行业从业者。我们期待,能有更多热爱视觉、工业自动化和机器人技术的朋友加入阿丘科技,共同去探索和扩展机器人应用的边界!
目录
译者序 xvii
前言 xxi
第1章 概述 1
什么是OpenCV 1
OpenCV怎么用 2
什么是计算机视觉 3
OpenCV的起源 6
OpenCV的结构 7
使用IPP来加速OpenCV 8
谁拥有OpenCV 9
下载和安装OpenCV 9
安装 9
从Git获取最新的OpenCV 12
更多的OpenCV文档 13
提供的文档 13
在线文档和维基资源 13
OpenCV贡献库 15
下载和编译Contributed模块 16
可移植性 16
小结 17
练习 17
第2章 OpenCV初探 19
头文件 19
资源 20
第一个程序:显示图片 21
第二个程序:视频 23
跳转 24
简单的变换 28
不那么简单的变换 30
从摄像头中读取 32
写入AVI文件 33
小结 34
练习 35
第3章 了解OpenCV的数据类型 37
基础知识 37
OpenCV的数据类型 37
基础类型概述 38
深入了解基础类型 39
辅助对象 46
工具函数 53
模板结构 60
小结 61
练习 61
第4章 图像和大型数组类型 63
动态可变的存储 63
cv::Mat类N维稠密数组 64
创建一个数组 65
独立获取数组元素 69
数组迭代器NAryMatIterator 72
通过块访问数组元素 74
矩阵表达式:代数和cv::Mat 75
饱和转换 77
数组还可以做很多事情 78
稀疏数据类cv::SparesMat 79
访问稀疏数组中的元素 79
稀疏数组中的特有函数 82
为大型数组准备的模板结构 83
小结 85
练习 86
第5章 矩阵操作 87
...
第6章 绘图和注释 139
绘图 139
艺术线条和填充多边形 140
字体和文字 146
小结 148
练习 148
第7章 OpenCV中的函数子 151
操作对象 151
主成分分析(cv::PCA) 151
奇异值分解cv::SVD 154
随机数发生器cv::RNG 157
小结 160
练习 160
第8章 图像、视频与数据文件 163
HighGUI模块:一个可移植的图形工具包 163
图像文件的处理 164
图像的载入与保存 165
关于codecs的一些注释 167
图片的编码与解码 168
视频的处理 169
使用cv::VideoCapture对象读取视频流 169
使用cv::VideoWriter对象写入视频 175
数据存储 176
cv::FileStorage的写入 177
使用cv::FileStorage读取文件 179
cv::FileNode 180
小结 183
练习 183
第9章 跨平台和Windows系统 187
基于Windows开发 187
HighGUI原生图形用户接口 188
通过Qt后端工作 199
综合OpenCV和全功能GUI工具包 209
小结 222
练习 222
第10章 滤波与卷积 225
...
第11章 常见的图像变换 267
...
第12章 图像分析 297
...
第13章 直方图和模板 329
...
第14章 轮廓 359
...
第15章 背景提取 391
...
第16章 关键点和描述子 433
...
第17章 跟踪 511
...
第18章 相机模型与标定 553
...
第19章 投影与三维视觉 599
...
第20章 机器学习基础 665
...
第21章 StatModel:OpenCV中的基准学习模型 689
...
第22章 目标检测 753
...
— 没有更多了 —
以下为对购买帮助不大的评价