• on the growth of l-s transforms and the singular direction of complex analysis
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

on the growth of l-s transforms and the singular direction of complex analysis

98 九品

库存2件

河南郑州
认证卖家担保交易快速发货售后保障

作者洪勇 著;孔荫莹

出版社暨南大学出版社

出版时间2010-12

版次1

装帧平装

货号606

上书时间2022-05-07

学问者书店

十三年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 洪勇 著;孔荫莹
  • 出版社 暨南大学出版社
  • 出版时间 2010-12
  • 版次 1
  • ISBN 9787811356847
  • 定价 28.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 217页
  • 字数 334千字
【内容简介】
20世纪20年代,芬兰著名数学家R.Nevanlinna创立了亚纯函数Nevanlinna值分布理论.为Dirichlet级数的研究注入了新的活力。30年代,法国著名数学家S.Mandelbrojt与G.Valiron等人首先对Dirichlet级数所定义的整函数的值分布进行研究,开创了Dirichlet级数研究的新方向。50年代初,余家荣先生留法回国,在国内开创了对Dirichlet级数、随机Dirichlet级数定义的解析函数的增长性、值分布及边界性质的研究,引起了国内外数学界的重视。80年代以来,经过以余家荣教授为代表的、以他的众多学生为主的中国数学工作者的努力,在这方面取得了丰富的成果,使我国在该领域的研究得到国际的重视。

  LaDlace—Stieltjes变换是一类在理论和应用上都十分重要的函数,在某种意义上,Dirichlet级数可以看作是它的一种特例。同时Laplace—Stiehjes变换也是Laplace变换的推广,而后者在通信传播技术等方面有广泛的应用,故其研究有助于应用学科的发展。对于这类函数的分析性质的研究,可追溯到20世纪30年代。1963年余家荣教授首先对LaDlace—Stieltjes变换定义的整函数的增长性及值分布方面的研究作了一些奠基性工作。近年来,c.J.K.Batty、高宗升、尚丽娜和作者等人继续对这类函数作了研究,取得了一些很好的结果。

  本书以作者的研究X-作为基础,前两章主要介绍关于Laplace二Stieltjes变换增长性的研究工作,中间两章讨论了复函数奇异方向的研究工作,都有很重要的意义。最后一章介绍Dirichlet级数最新的研究成果,有很大的研究价值。本书为有志探讨单复变函数值分布理论,尤其是Dirichlet级数的学者提供了一个新的参考和一个新的研究途径。凡具备“复变函数”和“实变函数”等大学本科知识的读者,都可以读懂本书。
【目录】
Contents

Preface

Chapter 1 On the growth of the Laplace-Stieltjes transform convergent in thecomplex plane

 1.1  Entire functions represented by L-S transform

 1.2  On orders and types of L-S transform convergent in the complex plane

 1.3  On Type-function of L-S transform convergent in the complex plane

 1.4  Abscissas of convergence of L-S transform independent of

Chapter 2 On the growth of the Laplace-Stieltjes transform convergent in the righthalfplane 

 2.1  On Type-function of L-S transform convergent in the right half-plane

 2.2  On the growth of zero order L-S transform convergent in the right half-plane

 2.3  The L-S transform convergent in the right half-plane and its relative transform

 2.4  The value distribution of the L-S transform convergent in the right half-plane

Chapter 3 Singular directions of quasimeromorphic mappings

 3.1  Introduction and some definitions

 3.2  A singular direction of quasimeromorphic lnappings on some Type-functions in thecomplex plane

 3.3  A singular radius of quasimeromorphic mappings on some Type-functions in the unitdisc

 3.4 On the filling discs in Borel radius of quasimeromorphic mapl~ng !~i the unit disc 

 3.5  On Nevanlinna direction and Julia direction Of quasimeromorphic mappings

Chapter 4 The growth of algebroidal functions

 4.1 Introduction of algebroidal functions

 4.2 A cohnection between the Nevanlinna characteristic function and the maximummodulus of algebroidal functions

 4.3  Some properties of algebroidal function

 4.4   On filling discs in the strong Borel direction of the algebroidal function with finite 

 4.5   On T-radius of algebroidal function in the unit disc

 4.6   Algebroidal function and its derivate function in the unit disc

 4.7   Normality criteria for families of algebroidal functions

Chapter 5 Some new studies of Dirichlet series and random Dirichlet series

 5.1  Introduction and background

 5.2  On orders and types of Dirichlet series of slow growth

 5.3  On orders and types of random Dirichlet series of slow growth

 5.4  On the distribution of random Dirichlet series in the whole plane

 5.5  Pits on some entire functions defined by. Dirichlet series 

 5.6  On some q-orders and q-types of Dirichlet-Hadamard product function 

Bibliography

Index

后记
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP