• 奥赛经典专题研究系列:(4本合售)
  • 奥赛经典专题研究系列:(4本合售)
  • 奥赛经典专题研究系列:(4本合售)
  • 奥赛经典专题研究系列:(4本合售)
  • 奥赛经典专题研究系列:(4本合售)
  • 奥赛经典专题研究系列:(4本合售)
  • 奥赛经典专题研究系列:(4本合售)
  • 奥赛经典专题研究系列:(4本合售)
  • 奥赛经典专题研究系列:(4本合售)
21年品牌 40万+商家 超1.5亿件商品

奥赛经典专题研究系列:(4本合售)

内有笔记

50 九品

仅1件

重庆九龙坡
认证卖家担保交易快速发货售后保障

作者沈文选、张垚、冷岗松 著;湖南省数学会、湖南师范大学数学奥林匹克研究所 编

出版社湖南师范大学出版社

出版时间2015-01

版次3

装帧平装

货号A8-4-2

上书时间2024-10-25

文博书海

九年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 沈文选、张垚、冷岗松 著;湖南省数学会、湖南师范大学数学奥林匹克研究所 编
  • 出版社 湖南师范大学出版社
  • 出版时间 2015-01
  • 版次 3
  • ISBN 9787564819934
  • 定价 44.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 427页
  • 字数 732千字
  • 正文语种 简体中文
  • 丛书 奥赛经典专题研究系列
【内容简介】
  2003年,湖南师范大学成立了“数学奥林匹克研究所”。研究所组建以来,积极投身到研究所的工作中,除深入进行奥林匹克数学与数学奥林匹克教育理论研究外,还将多年积累的辅导讲座资料进行了全面、系统的整理,以专题讲座的形式编写成了这套《奥赛经典专题研究系列》专题研究丛书,《奥赛经典专题研究系列:奥林匹克数学中的组合问题》丰富、系统的专题知识不仅是创新地解竞赛题所不可或缺的材料,而且还可激发解竞赛题的直觉或灵感。从教育心理学角度上说,只有具备了充分的专题知识与逻辑推理知识,才能有目的、有方向、有成效地进行探究性活动。
【作者简介】
  沈文选,男,1948年生,湖南师范大学数学与计算机科学学院教授,硕士生导师,湖南师范大学数学奥林匹克研究所副所长,中国数学奥林匹克高级教练,全国初等数学研究会理事长,全国高等师范院校数学教育研究会常务理事,《数学教育学报》编委,湖南省高师教育研究会理事长,湖南省数学会初等数学委员会副主任,湖南省数学奥林匹克培训的主要组织者与授课者,湖南师大附中、长沙市一中数学奥林匹克培训主要教练。
  已出版著作《走进教育数学》、《单形论导引》、《矩阵的初等应用》、《中学数学思想方法》、《竞赛数学教程》等30余部,发表学术论文《奥林匹克数学研究与数学奥林匹克教育》等80余篇,发表初等数学研究、数学思想方法研究和数学奥林匹克研究等文章200余篇。多年来为全国初、高中数学联赛,数学冬令营提供试题20余道,是1997年全国高中数学联赛,2002年全国初中数学联赛,2003年第18届数学冬令营命题组成员。
  
  张垚,男,1938年生,湖南师范大学数学与计算机科学学院教授,中国数学奥林匹克高级教练,湖南省数学奥林匹克主教练,美国《数学评论》评论员。1987~1999年任湖南省数学会副理事长兼普及工作委员会主任,负责全省数学竞赛的组织及培训工作,并主持了1989年全国初中数学联赛和1997年全国高中数学联赛的命题工作。
  已出版图书《数学奥林匹克理论、方法、技巧》等17部,发表学术论文80余篇。从1992年起享受国务院颁发的政府特殊津贴。曾荣获湖南省优秀教师,全国优秀教师,曾宪梓教育基金高等师范院校教师奖三等奖,湖南省教委科技进步奖二等奖等多项表彰和奖励。所培训的学生有100余人进入全国中学生数学冬令营,其中有40余人进入国家集训队,14人进入国家队,在国际中学生数学竞赛(IMO)中,共夺得10枚金牌和3枚银牌。
  
  冷岗松,男,1961年生,湖南师范大学数学与计算机科学学院、上海大学数学系教授,博士生导师,湖南师范大学数学奥林匹克研究所所长,中国数学奥林匹克委员会委员,美国《数学评论》评论员。从2000年起参加中国数学奥林匹克国家集训队的教练工作和上海市数学奥林匹克选手的培训工作。2001~2004年,多次参加国家集训队,中国数学奥林匹克(CMO),西部数学竞赛,女子数学竞赛的命题工作。1991~2004年担任湖南省数学奥林匹克培训主要教练,为湖南师大附中、长沙市一中前后10位同学在IMO中获取金牌做了大量培训工作。
  已出版专著《高中数学竞赛解题方法研究》,在国内外重要数学学术期刊发表论文30余篇。先后承担国家自然科学基金项目,教育部博士点基金项目等多项。曾获湖南省教委科技进步奖二等奖。
【目录】
第一章组合数学中的计数问题
§1基础知识
1.加法原理与乘法原理
2.无重复的排列与组合
3.可重复的排列与组合
4.圆排列与项链数
5.容斥原理
6.算二次原理(富比尼原理)
7.母函数
§2解组合计数问题的基本方法
1.枚举法和利用基本计数原理及基本公式
2.映射方法与一般对应方法
3.算二次方法
4.递推方法
5.利用容斥原理
6.母函数方法
7.折线法与反射原理
8*.群论方法
§3典型例题解题分析
模拟实战一

第二章组合恒等式和组合问题中的不等式
§1基础知识
1.二项式定理
2.基本组合恒等式
3.广义二项式定理
§2证明组合恒等式的基本方法
1.利用已有的基本组合恒等式及二项式定理
2.母函数方法
3.算子方法
4.递推方法
5.利用组合互逆公式
6.数学归纳法
7.组合模型方法
8.微积分方法
9*.差分方法
§3证明组合问题中的不等式的基本方法
1.放缩法
2.组合分析法
3.计数方法
4.数学归纳法
§4典型例题解题分析
模拟实战二

第三章存在性问题
§1基础知识
1.极端原理
2.抽屉原理
3.平均值原理
4.图形重叠原理
5.介值原理
§2解组合存在性问题的基本方法
1.反证法
2.利用极端原理
3.利用抽屉原理、平均值原理或图形重叠原理
4.利用介值原理
5.计数方法
6.数学归纳法
7.构造法
§3典型例题解题分析
模拟实战三

第四章组合最值问题
§1组合最值问题的特征
1.什么是组合最值问题
2.求解组合最值问题的步骤
§2求解组合最值问题的方法
1.估值法
……

第五章操作变换问题
第六章组合几何中的问题
第七章图论中的问题

参考解答
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP