• 聊天机器人(入门进阶与实战)/智能系统与技术丛书9787111637660
21年品牌 40万+商家 超1.5亿件商品

聊天机器人(入门进阶与实战)/智能系统与技术丛书9787111637660

正版图书,可开发票,请放心购买。

61.79 7.8折 79 全新

仅1件

广东广州
认证卖家担保交易快速发货售后保障

作者刘宇//崔燕红//郭师光//党习歌

出版社机械工业

ISBN9787111637660

出版时间2019-10

装帧其他

开本其他

定价79元

货号30747991

上书时间2024-07-29

淘书宝店

九年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
推荐序一
推荐序二
前言
第1章概率统计与应用数学的基础知识
1.1概率的定义
1.2条件概率与贝叶斯公式
1.3随机变量与分布函数
1.4概率分布与参数估计
1.5随机过程与马尔可夫模型
1.6信息熵
1.7本章小结
第2章语言模型与多元文法
2.1词袋模型
2.2N-Gram模型
2.2.1N-Gram简介
2.2.2N-Gram算法
2.2.3N-Gram用途
2.3数据平滑
2.3.1加法平滑方法
2.3.2Good-Turing估计法
2.3.3组合平滑方法
第3章序列标注模型
3.1中文分词
3.1.1条件随机场
3.1.2条件随机场进行中文分词
3.2词性标注
3.2.1词性标注的标准
3.2.2利用隐马尔可夫进行词性标注
3.3命名实体识别
3.3.1利用条件随机场模型进行命名实体识别
3.3.2命名实体识别在对话系统中的作用
3.4序列标注模型
3.5本章小结
第4章文本分析
4.1关键词抽取
4.1.1词频-逆文档频次算法
4.1.2Text Rank
4.2文本分类
4.2.1贝叶斯文本分类模型
4.2.2决策树文本分类模型
4.2.3SVM文本分类模型
4.3主题模型
4.3.1基础知识回顾
4.3.2吉布斯采样
4.3.3隐狄利克雷分配模型
4.4本章小结
第5章深度学习模型
5.1基于深度学习的自然语言模型
5.1.1神经网络自然语言模型与词向量
5.1.2A Neural Probabilistic Language Model
5.1.3CBOW和Skip-Gram
5.1.4Huffman编码与Huffman tree
5.1.5CBOW-Hierarchical Softmax
5.1.6Skip-Gram-Hierarchical Softmax
5.1.7FastText
5.1.8词的全局向量表示
5.2卷积网络CNN
5.2.1卷积网络CNN理论
5.2.2利用CNN进行文本分类
5.3循环网络RNN
5.3.1循环网络RNN(LSTM,GRU)理论
5.3.2利用RNN 进行情感分析
5.3.3Sequence-to-Sequence with Attention Model
5.4Transformer
5.4.1ResNet(Residual Network)残差网络模型
5.4.2Attention is all you need(Transformer)
5.5预训练模型
5.5.1Embeddings from Language Models(ELMo)
5.5.2BERT
第6章对话机器人的发展综述
6.1对话机器人发展史
6.1.1对话机器人的近况
6.1.2开放域
6.1.3垂直领域
6.1.4对话机器人的未来发展趋势
6.2人工智能在对话机器人中的应用
6.2.1深度学习在机器人方面的应用
6.2.2强化学习在机器人方面的应用
6.2.3知识图谱在机器人方面的应用
第7章自然语言理解与知识图谱
7.1知识图谱的表示:三元组模型
7.2知识抽取
7.2.1知识抽取-命名实体识别
7.2.2利用CRF模型识别 NER
7.2.3利用BiLSTM+CRF模型进行命名实体识别
7.3知识抽取-实体关系抽取:Relation Extraction
7.4知识图谱的构建
第8章答案生成与多轮对话
8.1预测会话与答案生成
8.1.1信息检索:利用搜索来预测答案
8.1.2句型模板匹配标准问题生成答案
8.1.3根据知识图谱推理得到答案
8.2多轮对话
8.2.1多轮对话概述
8.2.2任务型多轮对话的控制和生成
8.2.3多主题多轮对话
第9章对话系统的工程架构
9.1对话系统的工程技术
9.1.1常用技术
9.1.2对话系统的分类
9.1.3主要系统软件介绍
9.1.4系统运维相关
9.2对话系统的架构实现
9.2.1阿里小蜜
9.2.2百度对话系统
9.2.3垂直领域对话系统的架构
9.2.4开放领域对话系统的架构
9.3本章小结
第10章实战场景之一——客服机器人
10.1客服机器人架构
10.1.1功能需求
10.1.2系统逻辑架构图
10.2客服机器人设计
10.2.1FAQ的设计
10.2.2导购机器人的设计
10.2.3实例分析
10.3本章小结
第11章实战场景之二——开放域的QA问答
11.1开放领域问答机器人的架构
11.2开放领域问答机器人的开发流程和方案
11.3开放领域问答机器人的开发案例
第12章实战场景之三——聊天机器人
12.1Seq2Seq以及Attention机制
12.2Beam Search
12.3基于Seq2Seq的聊天机器人开发流程
12.3.1语料准备
12.3.2定义Encoder和Decoder
12.3.3模型训练和评估模块
12.3.4模型预测和Beam Search模块
12.4本章小结

内容摘要
本书是一本建立在零基础的,以介绍对话机器人领域为目的,通过书中的内容介绍让更多对对话机器人感兴趣的初级读者,可以由浅入深,了解和学习对话机器人的发展现状,用途,原理和技术。 主要内容:第壹部分数学与统计学基础
数学与统计学是现代机器学习理论的基础,本书会对机器学习中重点涉及的数学与统计学知识做一下整理,方便读者了解和掌握,以便可以顺利的过渡到后面专业知识的理解。
第二部分自然语言处理模型与技术对话机器人是以自然语言处理为发展的一个专业领域,基础的自然语言处理模型与技术对于学习后面的专业知识是必要的。本书通过先介绍自然语言处理模型,然后对依赖这个模型所扩展出的自然语言处理技术做详细介绍。使得初学者可以从数学理论到模型,从模型到技术的理论结合实际的方式,学好本书的内容第三部分对话机器人的核心技术在对话机器人的核心技术章节,我们先介绍1.对话机器人的发展综述。
2.自然语言理解NLU的部分,让读者可以更加清晰的认识到Intent(目的)识别和Entities(命名实体)识别的重要性。为了更加了解一句话中各个实体间的形容和被形容关系,我们引入句法树和依存句法分析的概念。这样机器人就可以简单的弄清一句话说的是什么,和各个实体间的关系。
3.为了让机器像人类一样可以有更多的知识积累和进行简单的逻辑推理,我们接下来要介绍知识图谱。这里我们重点介绍知识图谱的模型,知识抽取,知识图谱数据库的搭建和存储,以及在简单的了解到Intent和各个实体间关系后,如何根据知识图谱进行推理计算和理解4.在对句子有了一定的深入理解后,我们需要介绍预测会话和答复生成。在机器理解了问题的内容后,如何给出精确的答复。这里会介绍用于客服机器人的QuestiontoQuestion的匹配来得到预先准备好的标准答案。也会介绍通话自然语言理解利用知识图谱得到生成答案,以及通过互联网检索的方式,得到置信度较高的问题答案。*后还会了解如何存储我们学到的问题和答案的配对。
5.在机器学会了一问一答后,我们需要介绍1.根据上下文理解的对话生成。
2.多轮对话的控制和生成。
3.多主题多轮对话的切换。
6.人机对话过程中的情感计算1.设计情感计算的对话场景2.情感计算的建模与识别3.根据情感计算生成带情感色彩的回复第四部分对话机器人实战本书的第四个部分会详细分以下三个方面阐述1.实战对话机器人的架构2.对话机器人的开发流程和方案3.对话机器人的开发案例在对话机器人的开发案例里面,我们会介绍:1.垂直领域的客服机器人2.开放领域的知识问答类型机器人3.闲聊型的情感机器人第五部分附录附录里会有我们总结的机器学习的模型列表,自然语言模型列表,深度学习的模型列表以及每一章的实战代码

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP