¥ 8 九品
仅1件
作者汉纳斯·马克斯·哈普克 著;[美]霍布森·莱恩、科尔·霍华德、史亮、鲁骁、唐可欣、王斌 译
出版社人民邮电出版社
出版时间2020-10
版次1
装帧平装
上书时间2024-08-01
本书是介绍自然语言处理(NLP)和深度学习的实战书。NLP已成为深度学习的核心应用领域,而深度学习是NLP研究和应用中的必要工具。本书分为3部分:第一部分介绍NLP基础,包括分词、TF-IDF向量化以及从词频向量到语义向量的转换;第二部分讲述深度学习,包含神经网络、词向量、卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆(LSTM)网络、序列到序列建模和注意力机制等基本的深度学习模型和方法;第三部分介绍实战方面的内容,包括信息提取、问答系统、人机对话等真实世界系统的模型构建、性能挑战以及应对方法。
本书面向中高级Python开发人员,兼具基础理论与编程实战,是现代NLP领域从业者的实用参考书。
作者简介
霍布森.莱恩(Hobson Lane)拥有20年构建自主系统的经验,这些系统能够代表人类做出重要决策。Hobson在Talentpair训练机器完成简历的阅读和理解,以减少招聘者产生的偏见。在Aira,他帮助构建了第一个聊天机器人,为视障人士描述视觉世界。他是Keras、scikit-learn、PyBrain、PUGNLP和ChatterBot等开源项目的积极贡献者。他目前正在从事完全公益的开放科学研究和教育项目,包括构建一个开放源码的认知助手。他在AIAA、PyCon、PAIS和IEEE上发表了多篇论文和演讲,并获得了机器人和自动化领域的多项专利。
科尔.霍华德(Cole Howard)是一位机器学习工程师、NLP实践者和作家。他一生都在寻找模式,并在人工神经网络的世界里找到了自己真正的家。他开发了大型电子商务推荐引擎和面向超维机器智能系统(深度学习神经网络)的最先进的神经网络,这些系统在Kaggle竞赛中名列前茅。他曾在Open Source Bridge和Hack University 大会上发表演讲,介绍卷积神经网络、循环神经网络及其在自然语言处理中的作用。
汉纳斯.马克斯.哈普克(Hannes Max Hapke)是从一位电气工程师转行成为机器学习工程师的。他在高中研究如何在微控制器上计算神经网络时,对神经网络产生了浓厚的兴趣。Hannes喜欢自动化软件开发和机器学习流水线。他与合作者共同开发了面向招聘、能源和医疗应用的深度学习模型和机器学习流水线。Hannes在包括OSCON、Open Source Bridge和Hack University在内的各种会议上发表演讲介绍机器学习。
译者简介
史亮 小米NLP高级软件工程师,本科毕业于武汉大学,后保送中科院计算所硕博连读,获得博士学位。目前主要负责小米MiNLP平台的研发工作。
鲁骁 小米NLP高级软件工程师,本科、硕士毕业于华中科技大学,博士毕业于中科院计算所。目前主要从事大规模文本分类、内容过滤、人机对话等方向的研发工作。
唐可欣 小米NLP软件工程师,本科毕业于西安电子科技大学,硕士毕业于法国巴黎高科电信学院。主要从事语言模型、意图分析、情感分析等方向的研发工作。
王斌 小米AI实验室主任、NLP首席科学家,前中科院博导、研究员,中国科学院大学教授。译有《信息检索导论》《大数据:互联网大规模数据挖掘与分布式处理》《机器学习实战》等书籍。
— 没有更多了 —
以下为对购买帮助不大的评价