• 互联网流量大数据工程
  • 互联网流量大数据工程
21年品牌 40万+商家 超1.5亿件商品

互联网流量大数据工程

4 1.4折 29 九品

仅1件

山东菏泽
认证卖家担保交易快速发货售后保障

作者陈震、黄文良、曹军威 著

出版社清华大学出版社

出版时间2014-07

版次1

装帧平装

货号98-1

上书时间2024-08-21

金文旧书店

九年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 陈震、黄文良、曹军威 著
  • 出版社 清华大学出版社
  • 出版时间 2014-07
  • 版次 1
  • ISBN 9787302360834
  • 定价 29.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 185页
  • 字数 306千字
  • 正文语种 简体中文
【内容简介】
  《互联网流量大数据工程》在全面介绍互联网流量大数据获取、索引、存储和分析等基本知识的基础上,着重介绍基于多级过滤器和空时BloomFilter的流量测量技术、基于网包调度的流量管理技术、基于模式匹配的攻击检测技术、基于流式计算的实时攻击检测方法、基于流量分析的互联化安全软件的行为分析和基于大数据平台的互联网流量存储与处理的方法,并通过中国联通研究院的移动互联网监控平台和互联网企业流量大数据平台的实际例子,说明这些技术的具体应用,全书提供了大量应用实例。
  全书共分8章:第1章介绍互联网流量大数据背景,包括移动互联网发展态势。第2章介绍互联网流量测量与带宽管理,着重介绍高速网络流量测量与网包调度算法及应用。第3章介绍互联网流量归档与查询,该技术是流量大数据运营的前提。第4章介绍互联网流量大数据存储,大数据存储是流量大数据运营的基础,当前流行的大数据存储架构为HDFS/HBase技术。第5章介绍互联网流量攻击检测的流扫描和多模匹配HBM算法等关键技术。当前网络攻击形式更加多样化,如何高效深度分析网流内容,查找网络攻击源头是流量大数据的一个创新应用。第6章介绍互联网流量大数据的网络攻击检测,网络攻击实时检测是保障互联网服务安全的重要手段,介绍了互联网企业在保障业务安全中的攻击检测手段。第7章介绍互联网化软件流量行为分析。互联化终端软件是通过云计算平台部署的,能够充分利用互联网基础服务。在改善用户体验的同时,也会带来用户隐私泄露的隐患。第8章回顾了前7章内容,总结全书。
  《互联网流量大数据工程》适合作为高等院校计算机系统架构、计算机网络及安全专业高年级本科生、研究生的教材,同时可供对计算机网络比较熟悉并且对大数据平台有所了解的开发人员、广大科技工作者和研究人员参考。
【作者简介】
  陈震清华大学信研院副研究员,目前在互联网安全领域从事基础与应用研究,提出了应用于网络安全的字符串匹配HBM算法、字符串匹配ACST后缀树算法,提出了应用于网络流量检索的位图索引编码的SECCOMPAX、ICX和MASC方法。目前发表论文80余篇,其中3篇研究论文均在IEEExplore数据库Top100排行榜上,下载量超过3万多次。研究论文CloudComputing-BasedForensicAnalysisforCollaborativeNetworkSecurityManagementSystem连续2个月(2013年7月和8月)位列IEEEXplore数据库2013年Topl00排行榜第1名,2个月排行第2名。编著图书3本,并获得973计划、863计划、国家自然科学基金资助。协助指导已毕业研究生30余人,指导研究生连续两次获得清华大学校级优秀硕士毕业论文,指导本科生获得2013年SRT优秀项目校二等奖。指导5名本科同学获得国家和北京市级创新创业项目。
【目录】
第1章互联网流量大数据背景
1.1网络流量记录与分析
1.2网络流量研究现状
1.2.1网流信息的归档与查询
1.2.2网络流量的归档与查询
1.2.3对研究现状的分析
1.3互联网流量大数据平台
1.4国际前沿进展
1.5小结
参考文献

第2章互联网流量测量与带宽管理
2.1流量测量概述
2.1.1Internet流量测量
2.1.2流量测量的难点
2.1.3流量测量的目的
2.1.4网络测量与流量测量
2.1.5流量测量的分类
2.1.6离线测量与实时测量
2.2现有算法研究工作
2.2.1原始记录算法及其存在的问题
2.2.2解决问题的思路
2.2.3采样算法
2.2.4MultiStageFilter算法
2.2.5MultiResolutionSpaceCodeBloomFilter算法
2.2.6其他算法18互联网流量大数据工程
2.2.7工业界的解决方案
2.2.8NetFlow介绍
2.2.9NetFlow卡的工作原理
2.3流量管理概述
2.3.1流量管理定义
2.3.2流量控制
2.3.3高速流量管理调度算法比较与分析
2.3.4现有流量管理系统
2.3.5协同式流量管理系统
2.4结束语
参考文献

第3章互联网流量档案化
3.1高速网包获取的关键技术
3.1.1网包
3.1.2LinuxNAPI
3.1.3libpcap
3.1.4PF_RING
3.1.5Netmap
3.1.6Scap
3.2网包位图索引压缩算法
3.2.1位图索引数据库
3.2.2WAH索引压缩算法
3.2.3PLWAH算法
3.2.4COMPAX算法
3.3流量归档查询系统
3.3.1基于关系数据库的系统实现
3.3.2TM系统
3.3.3TIFA系统实现[14]
3.3.4TIFAflow系统[15][16]
3.3.5NETFLI流记录压缩与查询系统
3.3.6H
3.4处理平台展望
3.4.1多核处理平台[17]
3.4.2GPU方法[18]
3.5小结
参考文献

第4章互联网流量大数据存储
4.1流量大数据移动互联网增长背景
4.2流量大数据采集、获取与归集
4.3流量大数据平台架构及系统实现
4.3.1Hadoop集群
4.3.2HBase集群
4.3.3优化策略
4.3.4HBase与DatabaseX比较
4.4流量大数据经营与挑战
4.4.1流量大数据经营
4.4.2流量大数据-挑战
4.5流量大数据-总结
参考文献

第5章互联网流量攻击检测关键技术
5.1网包处理流程
5.1.1系统结构
5.1.2功能模块图
5.1.3多核组织模式
5.2多模匹配算法概述
5.2.1BloomFilter算法及其改进
5.2.2AC算法及其改进
5.2.3BM算法的推广型
5.3基于BloomFilter的匹配引擎
5.3.1BloomFilter算法
5.3.2参数选择
5.3.3散列函数选择
5.4基于HBM算法的匹配引擎
5.4.1记号和假设
5.4.2BM算法回顾
5.4.3HBM算法概述
5.4.4HBM算法的初始化流程
5.4.5HBM算法运行流程
5.4.6HBM算法在多核平台上的优化
5.4.7HBM算法的证明与分析
5.5实验与分析
5.5.1实验环境
5.5.2基于BloomFilter算法的引擎性能
5.5.3基于HBM算法的引擎性能
5.6本章小结和展望
参考文献

第6章互联网流量攻击检测实例
6.1数据中心的服务监测
6.2互联网服务访问行为分析
6.3互联网服务抗DDoS攻击
6.4互联网安全实时对抗
6.5网络攻击检测与流式处理
6.5.1TwitterStorm流计算
6.5.2Yahoo!S4分布式流计算平台
6.5.3FacebookDataFreeway/Puma3
6.5.4ApacheSpark平台
参考文献

第7章互联网化软件流量行为分析
7.1安全软件简介
7.2测试方案
7.2.1测试环境
7.2.2测试方法
7.3网络流量分析
7.3.1流量包进行统计
7.3.2网络行为频率分析
7.3.3网络行为数目分析
7.3.4网络行为间隔累积分布对比
7.3.5朱雀网络行为分析
7.3.6玄武网络行为分析
7.3.7远程通信地址分析
7.4流量分析结论
参考文献

附录A联通大数据平台流量记录格式
附录B联通大数据平台测试环境
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP