Cn单位球上的函数理论
¥
30
3.8折
¥
79
九品
库存2件
作者[美]鲁丁 著
出版社世界图书出版公司
出版时间2013-01
版次1
装帧平装
货号111AF
上书时间2024-09-03
商品详情
- 品相描述:九品
图书标准信息
-
作者
[美]鲁丁 著
-
出版社
世界图书出版公司
-
出版时间
2013-01
-
版次
1
-
ISBN
9787510052699
-
定价
79.00元
-
装帧
平装
-
开本
24开
-
纸张
胶版纸
-
页数
436页
- 【内容简介】
-
《Cn单位球上的函数理论》(作者鲁丁)是springer数学经典教材系列之一,表述清晰易懂,自然流畅,用很少的实分析、复分析和泛函分析基本知识做铺垫,全面介绍了球上基本原理。既是一本很好的参考书,又是一本高年级教程。
- 【目录】
-
ListofSymbolsandNotations
Chapter1
Preliminaries
1.1SomeTerminology
1.2TheCauchyFormulainPolydiscs
1.3Differentiation
1.4IntegralsoverSpheres
1.5HomogeneousExpansions
Chapter2
TheAutomorphismsofB
2.1Cartan'sUniquenessTheorem
2.2TheAutomorphisms
2.3TheCayleyTransform
2.4FixedPointsandAflineSets
Chapter3
IntegralRepresentations
3.1TheBergmanIntegralinB
3.2TheCauchyIntegralinB
3.3TheInvariantPoissonIntegralinB
Chapter4
ThelnvariantLaplacian
4.1TheOperator
4.2Eigenfunctionsof□
4.3□-HarmonieFunctions
4.4PluriharmonicFunctions
Chapter5
BoundaryBehaviorofPoissonIntegrals
5.1ANonisotropicMetriconS
5.2TheMaximalFunctionofaMeasureonS
5.3DifferentiationofMeasuresonS
5.4K-LimitsofPoissonIntegrals
5.5TheoremsofCalder6n.Privalov,Plessner
5.6TheSpacesN(B)andH□(B)
5.7Appendix:MarcinkiewiczInterpolation
Chapter6
BoundaryBehaviorofCauchyIntegrals
6,1AnInequality
6.2CauchyIntegralsofMeasures
6.3CauchyIntegralsofLP-Functions
6.4CauchyIntegralsofLipschltzFunctions
6.5ToeplitzOperators
6.6Gleason'sProblem
Chapter7
SomeLP-Topics
7.1ProjectionsofBergmanType
7.2RelationsbetweenHpandLp□H
7.3Zero-Varieties
7.4PluriharmonicMajoranls
7.5TheIsomettiesofHP(B)
Chapter8
ConsequencesoftheSchwarzLemma
8.1TheSchwarzLemmainB
8.2Fixed-PointSetsinB
8.3AnExtensionProblem
8.4TheLiodel6f-□irkaTheorem
8,5TheJulia-Carath6odoryTheorem
Chapter9
MeasuresRelatedtotheBallAlgebra
9.1Introduction
9.2Valskii'sDecomposition
9.3Henkin'sTheorem
9.4AGeneralLebesgueDecomposition
9.5AGeneralF.andM.RieszTheorem
9.6TheCole-RangeTheorem
9.7PluriharmonicMajorants
9.8TheDualSpaceofA(B)
Chapter10
InterpolationSetsfortheBallAlgebra
10.1SomeEquivalences
10.2ATheoremofVaropoulos
10.3ATheoremofBishop
10.4TheDavie-□ksendalTheorem
10.5SmoothInterpolationSets
10.6DeterminingSets
10.7PeakSetsforSmoothFunctions
Chapter11
BoundaryBehaviorofH□-Functions
11.1AFatouTheoreminOneVariable
11.2BoundaryValuesonCurvesinS
11.3Weak*-Convergence
11.4AProblemonExtremeValues
Chapter12
UnitarilyInvariantFunctionSpaces
12.1SphericalHarmonics
12.2TheSpacesH~,q)
12.3□-InvariantSpacesonS
12.4□-lnvariantSubalgebrasofC(S)
12.5TheCasen=2
Chapter13
Moebius-lnvariantFunctionSpaces
13.1□-InvariantSpacesonS
13.2□-InvariantSubalgebrasofCo(B)
13.3□-lnvariantSubspacesofC(□)
13.4SomeApplications
Chapter14
AnalyticVarieties
14.1TheWeierstrassPreparationTheorem
14.2ProjectionsofVarieties
14.3CompactVarietiesinC"
14.4HausdorffMeasures
Chapter15
ProperHolomorphicMaps
15.1TheStructureofProperMaps
15.2Ballsvs.Polydiscs
15.3LocalTheorems
15.4ProperMapsfromBtoB
15.5ACharacterizationofB
Chapter16
The□-problem
16.1DifferentialForms
16.2DifferentialFormsinC"
16.3The□-problemwithCompactSupport
16.4SomeComputations
16.5Koppelman'sCauchyFormula
16.6Theg-probleminConvexRegions
16.7AnExplicitSolutioninB
Chapter17
TheZerosofNevanlinnaFunctions
17.1TheHenkin-SkodaTheorem
17.2PlurisubharmonicFunctions
17.3AreasofZero-Varieties
Chapter18
TangentialCauchy-RiemannOperators
18.1ExtensionsfromtheBoundary
18.2UnsolvableDifferentialEquations
18.3BoundaryValuesofPluriharmonicFunctions
Chapter19
OpenProblems
19.1TheInnerFunctionConjecture
19.2RP-Measures
19.3MiscellaneousProblems
Bibliography
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价