• 高等数学典型题解题方法与分析
  • 高等数学典型题解题方法与分析
  • 高等数学典型题解题方法与分析
  • 高等数学典型题解题方法与分析
21年品牌 40万+商家 超1.5亿件商品

高等数学典型题解题方法与分析

7 1.9折 36 八五品

仅1件

湖南长沙
认证卖家担保交易快速发货售后保障

作者殷锡鸣 编

出版社华东理工大学出版社

出版时间2009-09

版次1

装帧平装

货号11-B2-5

上书时间2024-03-28

学长旧书店

十四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
图书标准信息
  • 作者 殷锡鸣 编
  • 出版社 华东理工大学出版社
  • 出版时间 2009-09
  • 版次 1
  • ISBN 9787562825906
  • 定价 36.00元
  • 装帧 平装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 341页
  • 字数 602千字
  • 正文语种 简体中文
【内容简介】
  本书是以殷锡鸣等主编的《高等数学(上册)、(下册)》中的习题为主要蓝本编写的学习辅导书。它既可作为该教材的配套辅导书,也可作为高等数学的学习辅导书。全书的内容按教材的章节编写,共分13章。每章的内容包括:本章的主要问题、典型问题方法与分析、习题选解三个部分。全书以每章中的主要问题为主线,将其中的概念、定理、公式融人问题中。全书围绕主要问题,归纳解题方法,对每一问题的基本解决方法给出“方法运用的注意点”,介绍方法的特点、运用时的注意点以及对一些基本概念的理解等内容。全书重点突出,注重对解题思想、解题方法的分析和总结,书中对每一个例题都给出了详尽的方法分析,对每一种方法都归纳了运用的心得与小结。
  本书特点是突出主要问题、例题典型、覆盖面广、解题方法清晰完整、解题思路分析透彻、归纳总结全面。本书可作为一般高等院校本科少学时,继续教育本科、专升本、专科,网络教育,函授教育,自学考试等学生的高等数学学习辅导书。
【目录】
第1章函数
1.1本章的主要问题
1.2典型问题方法与分析
1.2.1函数定义域的确定方法
1.2.2函数的运算及其表达式的计算方法
1.2.3函数的性质及其应用
1.3习题选解
第2章极限与连续
2.1本章的主要问题
2.2典型问题方法与分析
2.2.1极限的计算方法
2.2.2分段函数分段点处极限的计算方法
2.2.3无穷小的比较
2.2.4函数的连续性判别
2.2.5函数间断点类型的判别
2.2.6闭区间上连续函数的性质及其应用
2.3习题选解
第3章导数与微分
3.1本章的主要问题
3.2典型问题方法与分析
3.2.1显函数的导数计算方法
3.2.2隐函数的导数计算方法
3.2.3由参数方程确定的函数导数计算方法
3.2.4高阶导数的计算方法
3.2.5微分的计算方法及其应用
3.3习题选解
第4章微分中值定理与导数的应用
4.1本章的主要问题
4.2典型问题方法与分析
4.2.1导函数的零点问题及其应用
4.2.2微分中值定理在等式与不等式证明问题中的应用
4.2.3洛必达法则
4.2.4函数单调性的判别及其应用
4.2.5函数极值与最值的计算及其应用
4.2.6曲线的凹凸性判别与拐点的计算
4.2.7函数的作图
4.2.8曲率的计算
4.2.9泰勒公式及其应用
4.3习题选解
第5章积分
5.1本章的主要问题
5.2典型问题方法与分析
5.2.1运用定积分性质,牛顿一莱布尼兹公式计算定积分
5.2.2变限积分函数的导数计算及其应用
5.2.3积分等式与不等式的证明
5.3习题选解
第6章积分法
6.1本章的主要问题
6.2典型问题方法与分析
6.2.1不定积分的计算方法
6.2.2定积分的计算方法及其在证明问题中的应用
6.3习题选解
第7章定积分的应用与广义积分
7.1本章的主要问题
7.2典型问题方法与分析
7.2.1平面图形面积的计算方法
7.2.2立体体积的计算方法
7.2.3平面曲线弧长的计算方法
7.2.4变力沿直线作功问题的计算方法
7.2.5液体对侧面压力的计算方法
7.2.6广义积分的计算方法
7.3习题选解
第8章向量代数与空间解析几何
8.1本章的主要问题
8.2典型问题方法与分析
8.2.1向量的几何与代数运算
8.2.2求平面方程的方法
8.2.3求直线方程的方法
8.2.4几个距离问题的计算方法
8.2.5平面与平面、直线与直线、直线与平面间的夹角问题
8.2.6旋转曲面、柱面、锥面方程的计算方法
8.2.7求曲线在坐标面上投影曲线的方法
8.3习题选解
第9章多元函数微分学
9.1本章的主要问题
9.2典型问题方法与分析
9.2.1多元函数的复合及定义域的计算方法
9.2.2多元函数的极限计算及连续性的判定方法
9.2.3显函数形式表示的多元函数的偏导数计算
9.2.4隐函数的偏导数计算
9.2.5全微分的计算
9.2.6高阶偏导数的计算
9.2.7方向导数与梯度的计算
9.2.8多元函数微分学在几何上的应用
9.2.9多元函数的极值与最值计算
9.3习题选解
第10章重积分
10.1本章的主要问题
10.2典型问题方法与分析
10.2.1二重积分的计算方法
10.2.2三重积分的计算方法
10.2.3重积分的应用
10.2.4有关重积分的证明问题
10.3习题选解
第11章曲线积分与曲面积分
11.1本章的主要问题
11.2典型问题方法与分析
11.2.1第一型曲线积分的计算方法
11.2.2第二型曲线积分的计算方法
11.2.3第一型曲面积分的计算方法
11.2.4第二型曲面积分的计算方法
11.2.5曲线积分与曲面积分的应用
11.3习题选解
第12章级数
12.1本章的主要问题
12.2典型问题方法与分析
12.2.1数项级数的敛散性判别
12.2.2幂级数的收敛域确定
12.2.3函数的幂级数展开
12.2.4幂级数与数项级数的求和
12.2.5函数的傅里叶级数展开
12.3习题选解
第13章常微分方程
13.1本章的主要问题
13.2典型问题方法与分析
13.2.1一阶微分方程的求解方法
13.2.2二阶可降阶微分方程的求解方法
13.2.3二阶常系数线性微分方程的求解方法
13.2.4微分方程的应用
13.3习题选解
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP