缺失数据(格致方法·定量研究系列)
统计 新华书店全新正版书籍
¥
18.9
6.3折
¥
30
全新
库存4件
作者 保罗·D.埃里森 林毓玲 译
出版社 格致出版社
出版时间 2018-06
版次 1
装帧 其他
货号 1201724918
上书时间 2024-02-22
商品详情
品相描述:全新
新华文轩网络书店 全新正版书籍
商品描述
本书介绍了针对社会科学研究中经常遇到的样本数据缺失的处理方法。样本数据缺失是指样本中出现各种统计变量的缺失,以往研究者喜欢将这种随机认定为符合接近随机缺失的特性,但实际上这一假设并不一定能接近符合,往往只能符合随机缺失的特性,在对这种数据缺失进行处理时,往往会出现删除大量数据导致影响统计结果的问题。本书的主要内容在于介绍了在有缺失数据时如何进行优选似然估计的方法。除此之外,本书还对插补的EM算法、多重插补法等方法进行了介绍。并讨论了不可忽略的缺失数据。
图书标准信息
作者
保罗·D.埃里森 林毓玲 译
出版社
格致出版社
出版时间
2018-06
版次
1
ISBN
9787543228672
定价
30.00元
装帧
其他
开本
32开
纸张
胶版纸
页数
145页
字数
103千字
【内容简介】
本书介绍了针对社会科学研究中经常遇到的样本数据缺失的处理方法。样本数据缺失是指样本中出现各种统计变量的缺失,以往研究者喜欢将这种缺失认定为符合完全随机缺失的特性,但实际上这一假设并不一定能完全符合,往往只能符合随机缺失的特性,在对这种数据缺失进行处理时,往往会出现删除大量数据导致影响统计结果的问题。本书的主要内容在于介绍了在有缺失数据时如何进行*似然估计的方法。除此之外,本书还对插补的EM算法、多重插补法等方法进行了介绍。并讨论了不可忽略的缺失数据。
【作者简介】
保罗 D. 阿利森(Paul D. ALLISON) 美国宾州大学社会学教授。于1976年由威斯康辛大学获得博士学位,之后在芝加哥大学及宾州大学作统计学的博士后研究。关于社会科学中的统计方法,他已出版5本书及超过25篇文章。这些作品处理广泛多样的方法,包含线性回归、对数线性分析、logit分析、probit分析、测量误差、不平等测量、缺失数据、Markov processes及事件史分析。
【目录】
序 第1章 导论 第2章 假设 第1节 完全随机缺失的 第2节 随机缺失的 第3节 可忽略的 第4节 不可忽略的 第3章 传统的方法 第1节 成列删除 第2节 成对删除 第3节 虚拟变量调整 第4节 插补 第5节 总结 第4章 最大似然 第1节 回顾最大似然估计法 第2节 有缺失数据的ML 第3节 列联表数据 第4节 具正态分布数据的线性模型 第5节 EM算法 第6节 EM实例 第7节 直接ML 第8节 直接ML实例 第9节 结论 第5章 多重插补:基本原理 第1节 单一随机插补 第2节 多元随机插补 第3节 在参数估计值中考虑随机变异 第4节 在多变量正态模型下的多重插补 第5节 多变量正态模型的数据扩增法 第6节 在数据扩增法中收敛 第7节 连续的数据扩增法相对平行的数据扩增法 第8节 对非正态或类别数据使用正态模型 第9节 探索分析 第10节 MI实例1 第6章 多重插补:复杂化 第1节 MI中的交互作用和非线性 第2节 插补模型和分析模型之适合性 第3节 插补中因变量所扮演的角色 第4节 在插补过程中使用额外的变量 第5节 多重插补的其他参数方法 第6节 无参数及部分参数方法 第7节 连续的广义回归模型 第8节 线性假设检验和最大似然比检验 第9节 MI实例2 第10节 长期的及其他集群数据的MI 第11节 MI实例3 第7章 不可忽略的缺失数据 第1节 两种模型 第2节 Heckman的样本选择误差模型 第3节 形态混合模型的ML估计 第4节 形态混合模型的多重插补 第8章 总结与结论 注释 参考文献 译名对照表
点击展开
点击收起
— 没有更多了 —
本店暂时无法向该地区发货
新华文轩网络书店 全新正版书籍
以下为对购买帮助不大的评价