• 代数曲线几何(第2卷 第2分册)
21年品牌 40万+商家 超1.5亿件商品

代数曲线几何(第2卷 第2分册)

外语类学术专著 新华书店全新正版书籍

77.22 7.8折 99 全新

库存4件

江苏无锡
认证卖家担保交易快速发货售后保障

作者[意]阿尔巴雷洛 著

出版社世界图书出版公司

出版时间2014-08

版次1

装帧平装

货号1201049468

上书时间2024-02-21

新华文轩网络书店

十四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
新华文轩网络书店 全新正版书籍
商品描述
这是一部讲述代数曲线几何的专著,分为3卷,内容综合,全面,自成体系。本书是这部专著的下册,致力于代数曲线模理论的基础研究,作者均是在代数曲线几何发展中起到过积极作用的数学家。这门科目当发展繁荣,活跃,不仅体现在数学领域,而且体现在在和理论物理的交叉领域。手法特殊,将代数几何、复解析和拓扑/组合论很好地融合在一起,重点讲述了Teichmüller理论、模的胞状分解和Witten连通。丰富严谨的材料对想学习这么学科的学生和科研人员都是弥足珍贵的。
图书标准信息
  • 作者 [意]阿尔巴雷洛 著
  • 出版社 世界图书出版公司
  • 出版时间 2014-08
  • 版次 1
  • ISBN 9787510077777
  • 定价 99.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 963页
  • 正文语种 英语
【内容简介】
  Thisvolumeisdevotedtothefoundationsofthetheoryofmoduliofalgebraiccurvesdefinedoverthecomplexnumbers.Thefirstvolumewasalmostexclusivelyconcernedwiththegeometryonafixed,smoothcurve.Atthetimeitwaspublished,thelocaldeformationtheoryofasmoothcurvewaswellunderstood,butthestudyofthegeometryofglobalmoduliwasinitsearlystages.Thisstudyhassinceundergoneexplosivedevelopmentandcontinuestodoso.Therearetworeasonsforthis;onepredictableatthetimeofthefirstvolume,theothernot.
  Thepredictableonewastheintrinsicalgebro-geometricinterestinthemoduliofcurves;thishascertainlyturnedouttobethecase.Theotheristheexternalinfluencefromphysics.Becauseofthisconfluence,thesubjecthasdevelopedinwaysthatareincrediblyricherthancouldhavebeenimaginedatthetimeofwritingofVolumeI.
  Whenthisvolume,GACII,wasplanneditwasenvisionedthatthecen-terpiecewouldbethestudyoflinearseriesonageneralorvariablecurve,culminatinginaproofofthePetriconjecture.Thisisstillanimportantpartofthepresentvolume,butitisnotthecentralaspect.Rather,themainpurposeofthebookistoprovidecomprehensiveanddetailedfoundationsforthetheoryofthemoduliofalgebraiccurves.Inaddition,wefeelthataveryimportant,perhapsdistinguishing,aspectofGACIIistheblendingofthemultipleperspectives-algebro-geometric,complex-analytic,topological,andcombinatorial-thatareusedforthestudyofthemoduliofcurves.
【目录】
GuidefortheReader
ListofSymbols

ChapterⅨ.TheHilbertScheme
1.Introduction
2.TheideaoftheHilbertscheme
3.Flatness
4.ConstructionoftheHilbertscheme
5.Thecharacteristicsystem
6.Mumford'sexample
7.VariantsoftheHilbertscheme
8.Tangentspacecomputations
9.Cnfamiliesofprojectivemanifolds
10.Bibliographicalnotesandfurtherreading
11.Exercises

ChapterⅩ.Nodalcurves
1.Introduction
2.Elementarytheoryofnodalcurves
3.Stablecurves
4.Stablereduction
5.Isomorphismsoffamiliesofstablecurves
6.Thestablemodel,contraction,andprojection
7.Clutching
8.Stabilization
9.VanishingcyclesandthePicard-Lefschetztransformation
10.Bibliographicalnotesandfurtherreading
11.Exercises

ChapterⅪ.Elementarydeformationtheoryandsomeapplications
1.Introduction
2.Deformationsofmanifolds
3.Deformationsofnodalcurves
4.TheconceptofKuranishifamily.
5.TheHilbertschemeofv-canonicalcurves
6.ConstructionofKuranishifamilies
7.TheKuranishifamilyandcontinuousdeformations
8.TheperiodmapandthelocalTorellitheorem
9.CurvatureoftheHodgebundles
10.Deformationsofsymmetricproducts
11.Bibliographicalnotesandfurtherreading

ChapterⅩⅡ.Themodulispaceofstablecurves
1.Introduction
2.Constructionof'modulispaceasananalvticSDace
3.Modulispacesasalgebraicspaces
4.Themodulispaceofcurvesasanorbifold
5.Themodulispaceofcurvesasastack,I.
6.heclassicaltheoryofdescentforquasi-coherentsheaves
7.Themodulispaceofcurvesasastack,Ⅱ
8.Deligne-Mumfordstacks
9.Backtoalgebraicspaces
10.Theuniversalcurve,projectionsandclutchings
11.Bibliographicalnotesandfurtherreading
12.Exercises

ChapterⅩⅢ.Linebundlesonmoduli
1.Introduction
2.Linebundlesonthemodulistackofstablecurves
3.Thetangentbundletomoduliandrelatedconstructions
4.ThedeterminantofthecohomologyandsomeaDDlications
5.TheDelignepairing
6.ThePicardgroupofmodulispace
7.Mumford'sformula
8.ThePicardgroupofthehyperellipticlocus
9.Bibliographicalnotesandfurtherreading

ChapterⅩⅣ.Projectivityofthemodulispaceofstable
1.Introduction
2.Alittleinvarianttheory
3.Theinvariant-theoreticstabilityoflinearlystablesmoothcurves
4.Numericalinequalitiesforfamiliesofstablecurves
5.Projectivityofmodulispaces
6.Bibliographicalnotesandfurtherreading

ChapterⅩⅤ.TheTeichmullerpointofview
1.Introduction
2.Teichmullerspaceandthemappingclassgroup
3.Alittlesurfacetopology
4.QuadraticdifferentialsandTeichmullerdeformations
5.Thegeometryassociatedtoaquadraticdifferential
6.TheproofofTeichmuller'suniquenesstheorem
7.Simpleconnectednessofthemodulistackofstablecurves
8.GoingtotheboundaryofTeichmullerspace
9.Bibliographicalnotesandfurtherreading
10.Exercises

ChapterⅩⅥ.SmoothGaloiscoversofmodulispaces
1.Introduction
2.Levelstructuresonsmoothcurves
3.Automorphismsofstablecurves
4.Compactifyingmoduliofcurveswithlevelstructure,afirstattempt
5.AdmissibleG-covers
6.Automorphismsofadmissiblecovers
7.SmoothcoversofMq
8.Totallyunimodularlattices
9.SmoothcoversofMg,n
10.Bibliographicalnotesandfurtherreading
11.Exercises

ChapterⅩⅦ.Cyclesinthemodulispacesofstablecurves
1.Introduction
2.Algebraiccyclesonquotientsbyfinitegroups
3.Tautologicalclassesonmodulispacesofcurves
4.Tautologicalrelationsandthetautologicalring
5.Mumford'srelationsfortheHodgeclasses
6.Furtherconsiderationsoncyclesonmodulispaces
7.TheChowringofMO,P
8.Bibliographicalnotesandfurtherreading
9.Exercises

ChapterⅩⅧ.Cellulardecompositionofmodulispaces
1.Introduction
2.Thearcsystemcomplex
3.Ribbongraphs
4.TheideabehindthecellulardecompositionofMg,n
5.Uniformization
6.Hyperbolicgeometry
7.Thehyperbolicspineandthedefinitionofψ
8.TheequivariantcellulardecompositionofTeichmullerspace
9.Stableribbongraphs
10.ExtendingthecellulardecompositiontoapartialcompactificationofTeichmullerspace
11.Thecontinuityofψ
12.Oddsandends
13.Bibliographicalnotesandfurtherreading

ChapterⅪⅩ.Firstconsequencesofthecellulardecomposition
1.Introduction
2.ThevanishingtheoremsfortherationalhomologyofMg,p
3.ComparingthecohomologyofMg,ntotheoneofitsboundarystrata
4.ThesecondrationalcohomologygroupofMg,n
5.AquickoverviewofthestablerationalcohomologyofMg,nandthecomputationofH1(Mg,n)andH2(Mg.n)
6.Acloserlookattheorbicelldecompositionofmodulispaces
7.Combinatorialexpressionfortheclassesψi
8.Avolumecomputation
9.Bibliographicalnotesandfurtherreading
10.Exercises

ChapterⅩⅩ.Intersectiontheoryoftautologicalclasses
1.Introduction
2.Witten'sgeneratingseries
3.VirasorooperatorsandtheKdVhierarchy
4.Thecombinatorialidentity
5.Feynmandiagramsandmatrixmodels
6.Kontsevich'smatrixmodelandtheeauationL2Z=0
7.Anonvanishingtheorem
8.AbriefreviewofequivariantcohomologyandthevirtualEuler-Poincarecharacteristic
9.ThevirtualEuler-PoincarecharacteristicofMg,n
10.AveryquicktourofGromov-Witteninvariants
11.Bibliographicalnotesandfurtherreading
12.Exercises

ChapterⅩⅪ.Brill-Noethertheoryonamovingcurve
1.Introduction
2.TherelativePicardvariety
3.Brill-Noethervarietiesonmovingcurves
4.Looijenga'svanishingtheorem
5.TheZariskitangentspacestotheBrill-Noethervarieties
6.Theμ1homomorphism
7.Lazarsfeld'sproofofPetri'sconjecture
8.ThenormalbundleandHorikawa'stheory
9.Ramification
10.Planecurves
11.TheHurwitzschemeanditsirreducibility
12.Planecurvesandg1d's
13.Unirationalityresults
14.Bibliographicalnotesandfurtherreading
15.Exercises
Bibliography
Index
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

新华文轩网络书店 全新正版书籍
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP