• R-演算:一种信念修正的逻辑(英文版)(R-Calculus: A logic of belief revision)
21年品牌 40万+商家 超1.5亿件商品

R-演算:一种信念修正的逻辑(英文版)(R-Calculus: A logic of belief revision)

数据库 新华书店全新正版书籍

88.35 6.8折 130 全新

库存4件

江苏无锡
认证卖家担保交易快速发货售后保障

作者李未;眭跃飞

出版社科学出版社

出版时间2023-09

版次1

装帧精装

货号1203097818

上书时间2023-10-13

新华文轩网络书店

十四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
新华文轩网络书店 全新正版书籍
商品描述
R-演算是非单调的Gentzen型演绎系统,是一种具体的信念修正算子,被证明满足AGM假设和DP假设。本书是为了扩展R演算(i)从一阶逻辑到命题逻辑,描述逻辑,模态逻辑和逻辑编程;(ii)从最小变化语义到子集最小变化,伪子公式最小变化和基于演绎的最小变化(最后两个最小变化是新定义的);并针对这些极小值证明合理性和完整性定理。这些逻辑的变化。为了使R-演算可计算,我们在递归理论中给出了使用有限伤害优先级方法的近似R-演算。此外,R演算的两个应用被赋予了默认理论和语义继承网络。
图书标准信息
  • 作者 李未;眭跃飞
  • 出版社 科学出版社
  • 出版时间 2023-09
  • 版次 1
  • ISBN 9787030764102
  • 定价 130.00元
  • 装帧 精装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 200页
  • 字数 300.000千字
【内容简介】
信念修正是人工智能的研究分支之一。在哲学、认知心理学和数据库更新等领域中,很早就有对信念修正的讨论和研究。AGM公设在20世纪70年代末被提出,它是任何一个合理的信念修正算子应该满足的*基本条件。《R-CALCULUS:A Logic of Belief Revision》作者李未院士在20世纪80年代中期提出了R-演算,这是一个满足AGM公设、非单调的并且类似于Gentzen推理系统的信念修正算子。《R-CALCULUS:A Logic of Belief Revision》对R-演算作多个视角的扩展,将为研究生寻找研究方向和研究思路提供一定帮助。
【目录】
Contents

1 Introduction 1

1.1 Belief Revision 1

1.2 R-Calculus 2

1.3 Extending R-Calculus 4

1.4 Approximate R-Calculus 6

1.5 Applications of R-Calculus 7

References 8

2 Preliminaries 11

2.1 Propositional Logic 11

2.1.1 Syntax and Semantics 12

2.1.2 Gentzen Deduction System 13

2.1.3 Soundness and Completeness Theorem 13

2.2 First-Order Logic 16

2.2.1 Syntax and Semantics 16

2.2.2 Gentzen Deduction System 18

2.2.3 Soundness and Completeness Theorem 18

2.3 Description Logic 21

2.3.1 Syntax and Semantics 21

2.3.2 Gentzen Deduction System 23

2.3.3 Completeness Theorem 25

References 27

3 R-Calculi for Propositional Logic 29

3.1 Minimal Changes 31

3.1.1 Subset-Minimal Change 31

3.1.2 Pseudo-Subformulas-Minimal Change 32

3.1.3 Deduction-Based Minimal Change 34

3.2 R-Calculus for S-Minimal Change 34

3.2.1 R-Calculus S for a Formula 34

3.2.2 R-Calculus S for a Theory 37

3.2.3 AGM Postulates A∈for C-Minimal Change 38

3.3 R-Calculus for Minimal Change 40

3.3.1 R-Calculus T for a Formula 40

3.3.2 R-Calculus T for a Theory 44

3.3.3 AGM Postulates A≤for ≤Minimal Change 46

3.4 R-Calculus for F-Minimal Change 48

3.4.1 R -Calculus U for a Formula 49

3.4.2 R-Calculus U for a Theory 54

References 55

4 R-Calculi for Description Logics 57

4.1 R-Calculus for E-Minimal Change 58

4.1.1 R-Calculus sDL for a Statement 58

4.1.2 R -Calculus sDL for a Set of Statements 62

4.2 R-Calculus for Minimal Change 63

4.2.1 Pseudo-Subconcept-Minimal Change 63

4.2.2 R-Calculus TDL for a Statement 65

4.2.3 R-Calculus TDL for a Set of Statements 69

4.3 Discussion on R-Calculus for F s-Minimal Change 71

References 72

5 R-Calculi for Modal Logic 73

5.1 Propositional Modal Logic 74

5.2 R-Calculus SM for Minimal Change 79

5.3 R-Calculus TM for Minimal Change 83

5.4 R-Modal Logic 88

5.4.1 A Logical Language of R-Modal Logic 89

5.4.2 R-Modal Logic 90

References 92

6 R-Calculi for Logic Programming 93

6.1 Logic Programming 93

6.1.1 Gentzen Deduction Systems 94

6.1.2 Dual Gentzen Deduction System 95

6.1.3 Minimal Change 96

6.2 R-Calculus SLP for Minimal Change 97

6.3 R-Calculus TLP for Minimal Change 99

References 103

7 R-Calculi for First-Order Logic 105

7.1 R-Calculus for S-Minimal Change 105

7.1.1 R-Calculus sFOL for a Formula 105

7.1.2 R-Calculus sFOL for a Theory 108

7.2 R-Calculus for Minimal Change 109

7.2.1 R -Calculus T FOL for a Formula 109

7.2.2 R-Calculus TFOL for a Theory 113

References 114

8 Nonmonotonicity of R. Calculus 115

8.1 Nonmonotonic Propositional Logic 116

8.1.1 Monotonic Gentzen Deduction System G1 116

8.1.2 Nonmonotonic Gentzen Deduction System Logic G2 117

8.1.3 Nonmonotonicity of G2 121

8.2 Involvement ofr K A in a Nonmonotonic Logic 123

8.2.1 Default Logic 124

8.2.2 Circumscription 124

8.2.3 Autoepistemic Logic 125

8.2.4 Logic Programming with Negation as Failure 126

8.3 Correspondence Between R- Calculus and Default Logic 128

8.3.1 Transformation from R-Calculus to Default Logic 128

8.3.2 Transformation from Default Logic to R-Calculus 131

References 132

9 Approximate R-Calculus 133

9.1 Finite Injury Priority Method 134

9.1.1 Post\'s Problem 134

9.1.2 Construction with Oracle 135

9.1.3 Finite Injury Priority Method 136

9.2 Approximate Deduction 138

9.2.1 Approximate Deduction System for First-Order Logic 139

9.3 R-Calculus Fapp and Finite Injury Priority Method 140

9.3.1 Construction with Oracle 140

9.3.2 Approximate Deduction System F app 141

9.3.3 Recursive Construction 143

9.3.4 Approximate R-Calculus Frece 146

9.4 Default Logic and Priority Method 148

9.4.1 Construction of an Extension without Injury 148

9.4.2 Construction of a Strong Extension with Finite Injury Priority Method 150

References 152

10 An Application to Default Logic 153

10.1 Default Logic and Subset-Minimal Change 154

10.1.1 Deduction System SD for a Default 154

10.1.2 Deduction System SD for a Set of Defaults 157

10.2 Default Logic and Pseudo-subformula minimal Change 159

10.2.1 Deduction System TD for a Default 159

10.2.2 Deduction System TD for a Set of Defaults 163

10.3 Default Logic and Deduction-Based Minimal Change 165

10.3.1 Deduction System UD for a Default 165

10.3.2 Deduction System UD for a Set of Defaults 169

References 170

11 An Application to Semantic Networks 171

11.1 Semantic Networks 171

11.1.1 Basic Definitions 172

11.1.2 Deduction System G4 for Semantic Networks 175

11.1.3 Soundness and Completeness Theorem 176

11.2 R-Calculus for C-Minimal Change 181

11.2.1 R-Calculus SN for a Statement 182

11.2.2 Soundness and Completeness Theorem 184

11.2.3 Examples 188

11.3 R-Calculus for Minimal Change 190

11.3.1 R-Calculus TSN for a Statement 190

11.3.2 Soundness and Completeness Th
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

新华文轩网络书店 全新正版书籍
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP