全新正版现货,以书名为准,放心购买,购书咨询18931383650朱老师
¥ 186.62 6.5折 ¥ 288 全新
库存14件
作者危辉
出版社中国科技出版传媒股份有限公司
ISBN9787030718938
出版时间2021-05
装帧平装
开本16开
定价288元
货号11660660
上书时间2024-12-18
第1章什么是类脑计算
随着神经生物学研究中实验手段的不断进步,科学家对神经系统结构与功能的认识也在不断深入.由于神经系统是主导智慧的根本物质基础,因此这些基础研究的进步自然会带动其他应用学科的发展.一个最直接的启示就是神经生物学发现对人工智能研究有什么直接的推动吗?毕竟人工智能最根本的目标就是想让机器能够像大脑一样聪明地工作.这就是类脑计算,一个不太新,但又被不断刷新的领域
1.1类脑计算的非正式说明
顾名思义,类脑计算就是“要像大脑那样进行计算”.大脑作为目前自然界已知的,在问题求解、推理、决策、理解、学习等智能行为方面最为高效、最为优异的生物进化产物,它的运行机制对研究自动化、计算机的群体而言充满了吸引力,因为我们从一开始就称呼计算机为电脑.可见,从心底里我们是希望计算机能够像大脑那样工作.基于此种初衷,研究人员会非常自然地去模仿大脑的运行原理,无论是从功能层面,还是从结构层面.若我们给类脑计算下一个较为严格的定义,那么它就是一种模仿神经生理学和生理心理学机制为某种智能应用设计实现方法的研究.它应该是人工智能研究的一个子集,针对的是智能仿真问题或应用,面向属于计算机科学、自动化或控制论范畴的算法设计和系统实现问题.在人工智能发展史中,连接主义学派所走的研究路线就属于类脑计算,那些人工神经元网络模型,如典型的多层感知机模型、自组织特征映射模型、联想记忆模型等就是典型代表.当下机器学习研究领域炙手可热的深度学习模型可视为此领域的最新发展与大脑研究相关的当前还有两个研究分支:一个是基于脑电信号的脑机接口;另一个是脑信息学,这两个研究分支虽然也关系到大脑,但它们不属于类脑计算的范畴.原因有两个
第一,研究目标不同.例如,脑连接组计划针对的是神经科学范畴的问题,不是计算科学范畴的问题.而类脑计算针对的是算法和自动化系统实现问题。
第二,研究方法不同.脑机接口和脑信息学通常采用来自计算机科学领域的机器学习或数据挖掘算法,是对取自大脑的数据施加现成的方法,这些方法本身不是研究对象,只是可供选择的多种手段之一.而类脑计算所采用的方法就是模仿大脑机制,其前提是弄清楚神经科学范畴的原理性问题,它通常不是计算机科学领域现成可用的方法:用一句流行语来归纳它们的不同之处就是:脑信息学是从事计算的人跨界到生物学领域,用计算机方法解决生物学领域的问题;而类脑计算是从事计算的人跨界到生物学领域,用生物学启示来解决计算机领域的问题.简而言之,它们的区别就是:跨出界了.还走回来吗?前者类似于做歌唱界跑得最快的人,而后者是做歌唱界歌唱得最好的人
1.2类脑计算助力工程问题
在人工智能领域有很多挑战性很高的工程问题,例如计算机视觉或图像理解我们通过始自眼睛的视觉神经系统感知到外界超过70%的信息,而且我们还觉得这是不费吹灰之力就能做好的,哪会复杂呢?但一旦当我们需要用计算机来处理图像信息,分析图像的意义时,视觉信息加工的巨大复杂性就如同隐藏在水面下的冰山那样浮现出来,我们意识到了所谓“大头在下面”.现代图像理解或计算机视觉系统对它们能够达到的性能和所付出的时间和硬件代价而言完全不成比例,效能很低.既然生物视觉系统性能很好,那么我们能不能模仿一种或几种神经生物学关于视觉神经机制的发现来优化计算效能呢?
例如,在高等哺乳动物的视网膜中,有一种神经节细胞,它是视网膜信息处理的最后一站,也是此阶段最重要的一站.视网膜神经节具有同心圆拮抗式的经典感受野,其空间整合特性是处理图像区域亮度对比信息、提取图像的边缘信息,但高等动物极其复杂的视觉系统对图像信息的处理绝不仅限于边缘增强,它应该在边缘处理的基础上,尽可能完整地把图像信息传递给大脑.非经典感受野是在经典感受野之外的一个大范围区域,单独刺激该区域并不能直接引起细胞的反应,但对经典感受野内刺激所引起的反应有调制作用.视网膜神经节细胞的非经典感受野主要是去抑制性的,因此可以在一定程度上补偿由经典感受野所造成的低空间频率信息的损失,在保持边界增强功能的同时,传递图像的区域亮度梯度信息,显示大面积表面上亮度的缓慢变化.由此可见,非经典感受野大大拓宽了视觉细胞信息处理的范围,为整合和检测大范围的复杂图形提供了神经基础,研究发现,视网膜神经节细胞的感受野随着视觉刺激的不同而发生变化,而以往对视网膜神经节细胞非经典感受野的建模大多基于固定不变的感受野,都没有考虑感受野的动态变化特性.那么,我们可以为视网膜神经节细胞非经典感受野的基本结构建立了多层次、带反馈的神经计算模型,并用这样的模型来表征图像图1-1就是基于上述原理进行的图像表征实验.通常在计算机里用像素的组合表征图像,但所需像素阵列很大,给图像理解带来了压力.图中每组同心圆都是一个具有前述非经典感受野模式的计算单元,它能够根据所覆盖范围内图像的均一程度进行扩大或缩小,若整个范围内图像内容很均匀,那么只要表征这个平均信息就可以了.若整个范围内图像内容的差异度很大,说明单靠这个单元不足以精确表示……
— 没有更多了 —
以下为对购买帮助不大的评价