• 正版现货新书 Hadoop实战手册 9787115337955 Jonathan R. Owens
21年品牌 40万+商家 超1.5亿件商品

正版现货新书 Hadoop实战手册 9787115337955 Jonathan R. Owens

全新正版现货,以书名为准,放心购买,购书咨询18931383650朱老师

41.19 7.0折 59 全新

仅1件

北京丰台
认证卖家担保交易快速发货售后保障

作者Jonathan R. Owens

出版社人民邮电出版社

ISBN9787115337955

出版时间2014-03

装帧平装

开本16开

定价59元

货号1200855229

上书时间2024-10-11

黎明书店

十五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
  Jonathan R.Owens:软件工程师,拥有Java和C++技术背景,很近主要从事Hadoop及相关分布式处理技术工作。目前就职于comScore公司,为核心数据处理团队成员。comScore是一家知名的从事数字测量与分析的公司,公司使用Hadoop及其他定制的分布式系统对数据进行聚合、分析和管理,每天处理超过400亿单的交易。

Jon Lentz:comScore核心数据处理团队软件工程师。他更倾向于使用Pig脚本来解决问题。在加入comScore之前,他主要开发优化供应链和分配固定收益证券的软件。

Brian Femiano:本科毕业于计算机科学专业,并且从事相关专业软件开发工作6年,很近两年主要利用Hadoop构建不错分析与大数据存储。他拥有商业领域的相关经验,以及丰富的政府合作经验。他目前就职于Potomac Fusion公司,这家公司主要从事可扩展算法的开发,并致力于学习并改进政府领域中优选进和很复杂的数据集。他通过教授课程和会议培训在公司内部普及Hadoop和云计算相关的技术。

目录
章Hadoop分布式文件系统——导入和导出数据 
1.1介绍 
1.2使用Hadoopshell命令导入和导出数据到HDFS 
1.3使用distcp实现集群间数据复制 
1.4使用Sqoop从MySQL数据库导入数据到HDFS 
1.5使用Sqoop从HDFS导出数据到MySQL 
1.6配置Sqoop以支持SQLServer 
1.7从HDFS导出数据到MongoDB 
1.8从MongoDB导入数据到HDFS 
1.9使用Pig从HDFS导出数据到MongoDB 
1.10在Greenplum外部表中使用HDFS 
1.11利用Flume加载数据到HDFS中 
第2章HDFS 
2.1介绍 
2.2读写HDFS数据 
2.3使用LZO压缩数据 
2.4读写序列化文件数据 
2.5使用Avro序列化数据 
2.6使用Thrift序列化数据 
2.7使用ProtocolBuffers序列化数据 
2.8设置HDFS备份因子 
2.9设置HDFS块大小 
第3章抽取和转换数据 
3.1介绍 
3.2使用MapReduce将Apache日志转换为TSV格式 
3.3使用ApachePig过滤网络服务器日志中的爬虫访问量 
3.4使用ApachePig根据时间戳对网络服务器日志数据排序 
3.5使用ApachePig对网络服务器日志进行会话分析 
3.6通过Python扩展ApachePig的功能 
3.7使用MapReduce及二次排序计算页面访问量 
3.8使用Hive和Python清洗、转换地理事件数据 
3.9使用Python和HadoopStreaming执行时间序列分析 
3.10在MapReduce中利用MultipleOutputs输出多个文件 
3.11创建用户自定义的HadoopWritable及InputFormat读取地理事件数据 
第4章使用Hive、Pig和MapReduce处理常见的任务 
4.1介绍 
4.2使用Hive将HDFS中的网络日志数据映射为外部表 
4.3使用Hive动态地为网络日志查询结果创建Hive表 
4.4利用Hive字符串UDF拼接网络日志数据的各个字段 
4.5使用Hive截取网络日志的IP字段并确定其对应的国家 
4.6使用MapReduce对新闻档案数据生成n—gram 
4.7通过MapReduce使用分布式缓存查找新闻档案数据中包含关键词的行 
4.8使用Pig加载一个表并执行包含GROUPBY的SELECT操作 
第5章不错连接操作 
5.1介绍 
5.2使用MapReduce对数据进行连接 
5.3使用ApachePig对数据进行复制连接 
5.4使用ApachePig对有序数据进行归并连接 
5.5使用ApachePig对倾斜数据进行倾斜连接 
5.6在ApacheHive中通过map端连接对地理事件进行分析 
5.7在ApacheHive通过优化的全外连接分析地理事件数据 
5.8使用外部键值存储(Redis)连接数据 
第6章大数据分析 
6.1介绍 
6.2使用MapReduce和Combiner统计网络日志数据集中的独立IP数 
6.3运用Hive日期UDF对地理事件数据集中的时间日期进行转换与排序 
6.4使用Hive创建基于地理事件数据的每月死亡报告 
6.5实现Hive用户自定义UDF用于确认地理事件数据的来源可靠性 
6.6使用Hive的map/reduce操作以及Python标记最长的无暴力发生的时间区间 
6.7使用Pig计算Audioscrobbler数据集中艺术家之间的余弦相似度 
6.8使用Pig以及datafu剔除Audioscrobbler数据集中的离群值 
第7章不错大数据分析 
7.1介绍 
7.2使用ApacheGiraph计算PageRank 
7.3使用ApacheGiraph计算单源最短路径 
7.4使用ApacheGiraph执行分布式宽度优先搜索 
7.5使用ApacheMahout计算协同过滤 
7.6使用ApacheMahout进行聚类 
7.7使用ApacheMahout进行情感分类 
第8章调试 
8.1介绍 
8.2在MapReduce中使用Counters监测异常记录 
8.3使用MRUnit开发和测试MapReduce 
8.4本地模式下开发和测试MapReduce 
8.5运行MapReduce作业跳过异常记录 
8.6在流计算作业中使用Counters 
8.7更改任务状态显示调试信息 
8.8使用illustrate调试Pig作业 
第9章系统管理 
9.1介绍 
9.2在伪分布模式下启动Hadoop 
9.3在分布式模式下启动Hadoop 
9.4添加一个新节点 
9.5节点安全退役 
9.6NameNode故障恢复 
9.7使用Ganglia监控集群 
9.8MapReduce作业参数调优 
0章使用ApacheAccumulo进行持久化 
10.1介绍 
10.2在Accumulo中设计行键存储地理事件 
10.3使用MapReduce批量导入地理事件数据到Accumulo 
10.4设置自定义字段约束Accumulo中的地理事件数据 
10.5使用正则过滤器限制查询结果 
10.6使用SumCombiner计算同一个键的不同版本的死亡数总和 
10.7使用Accumulo实行单元级安全的扫描 
10.8使用MapReduce聚集Accumulo中的消息源 

内容摘要
这是一本Hadoop实用手册,主要针对实际问题给出相应的解决方案。欧文斯等编著的《Hadoop实战手册》特色是以实践结合理论分析,手把手教读者如何操作,并且对每个操作都做详细的解释,对一些重要的知识点也做了必要的拓展。全书共包括3个部分,部分为基础篇,主要介绍Hadoop数据导入导出、HDFS的概述、Pig与Hive的使用、ETL和简单的数据处理,还介绍了MapReduce的调试方式;第二部分为数据分析不错篇,主要介绍不错聚合、大数据分析等技巧;第三部分为系统管理篇,主要介绍Hadoop的部署的各种模式、添加新节点、退役节点、快速恢复、MapReduce调优等。
《Hadoop实战手册》适合各个层次的Hadoop技术人员阅读。通过阅读《Hadoop实战手册》,Hadoop初学者可以使用Hadoop来进行数据处理,Hadoop工程师或者数据挖掘工程师可以解决复杂的业务分析,Hadoop系统管理员可以更好地进行日常运维。《Hadoop实战手册》也可作为一本Hadoop技术手册,针对要解决的相关问题,在工作中随时查阅。

主编推荐
不错实用的技术手册,给出有助于快速解决诸多Hadoop相关技术问题的实际解决方案。书中包含丰富的简单、实用的代码示例。
《Hadoop实战手册》特色是:
文字简洁,易于读者理解。
精挑细选,关注很重要的任务和问题。
细心组织,提供高效的问题解决方案。
讲解透彻,清晰解读每个操作步骤。
举一反三,将解决方案应用到其他场景中。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP