• 微瑕Python机器学习开发实战
21年品牌 40万+商家 超1.5亿件商品

微瑕Python机器学习开发实战

28.7 4.8折 59.8 全新

库存2件

北京丰台
认证卖家担保交易快速发货售后保障

作者王新宇

出版社人民邮电出版社

ISBN9787115525277

出版时间2020-07

版次1

装帧平装

开本16开

纸张胶版纸

定价59.8元

货号2170-9787115525277

上书时间2024-12-10

青松阁文化

十五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
基本信息
书名:Python机器学习开发实战
定价:59.8元
作者:王新宇
出版社:人民邮电出版社
出版日期:2020-07-01
ISBN:9787115525277
字数:
页码:
版次:
装帧:平装
开本:16开
商品重量:
编辑推荐

内容提要

目录
章 环境配置与准备知识 11.1 环境配置 11.2 机器学习相关概念 21.2.1 机器学习中的数据 21.2.2 训练集和测试集 41.2.3 欠拟合与过度拟合 51.2.4 人工智能、机器学习、深度学习 5第2章 Python基础知识 62.1 hello world! 62.2 变量 62.3 操作符 72.3.1 基本运算符 72.3.2 比较运算符 82.3.3 逻辑运算符 102.4 字符串 112.4.1 基础 112.4.2 转义字符 122.4.3 索引和切片 132.4.4 字符串方法 142.5 列表 182.6 集合 212.7 字典 222.8 循环语句 242.9 判断语句 262.10 函数 262.11 面向对象编程 29第3章 数值计算扩展工具——Numpy 313.1 创建数组 313.1.1 创建元素为0或1的数组 313.1.2 将列表转换为数组 333.1.3 生成一串数字 333.1.4 生成特殊数组 343.2 数组索引 353.3 排序与查询 363.4 随机数生成器 393.5 数学函数 413.5.1 三角函数 413.5.2 指数与对数 433.5.3 约数 433.5.4 数组自身加乘 443.5.5 算术运算 453.6 统计函数 473.7 线性代数 50第4章 数据分析工具——Pandas 524.1 序列对象Series 524.1.1 创建Series对象 524.1.2 Series索引 534.1.3 查看Series相关属性 564.1.4 二元运算 574.1.5 统计方法 624.1.6 缺失值处理 654.1.7 排序 664.1.8 计数与重复 674.1.9 其他 694.2 数据框对象DataFrame 704.2.1 创建数据框 704.2.2 行操作 714.2.3 列操作 734.3 分组对象GroupBy 754.3.1 基本函数 754.3.2 统计函数 77第5章 可视化展示库——Matplotlib 805.1 作图类命令 805.1.1 折线图 805.1.2 柱状图和条形图 825.1.3 散点图 845.1.4 饼图 855.1.5 面积图 865.2 坐标轴控制 885.2.1 axis 885.2.2 xlim与ylim 895.2.3 xticks与yticks 905.2.4 xlabel与ylabel 905.3 其他设置 91第6章 通用型开源机器学习库——Scikit 936.1 预处理 946.1.1 标准化 956.1.2 非线性转换 966.1.3 归一化 976.1.4 二值化 976.1.5 分类特征编码 986.1.6 缺失值插补 996.1.7 生成多项式特征 1006.2 降维 1016.3 有监督学习与无监督学习 1016.4 模型评估 1026.4.1 测试集评分 1026.4.2 交叉验证迭代器 1056.4.3 分层交叉验证迭代器 1086.4.4 分组迭代器 1096.4.5 时间序列交叉验证 111第7章 机器学习常用数据集 1127.1 boston房价数据集 1127.1.1 数据集基本信息描述 1127.1.2 数据探索 1137.2 diabetes糖尿病数据集 1157.2.1 数据基本信息描述 1167.2.2 数据探索 1167.3 digits手写字体识别数据集 1177.3.1 数据集基本信息描述 1247.3.2 数据集探索 1247.4 iris鸢尾花数据集 1277.4.1 数据集基本信息描述 1277.4.2 数据探索 1287.5 wine红酒数据集 1317.5.1 数据集基本信息描述 1317.5.2 数据探索 132第8章 线性回归算法 1348.1 从二次函数到机器学习 1348.1.1 二次函数求解方法 1348.1.2 梯度下降 1358.1.3 梯度下降的Python实现 1388.1.4 初始值与学习速率? 的选择 1398.2 深入理解线性回归算法 1428.2.1 回归曲线的数学解释 1438.2.2 梯度下降方法求解直线 1448.2.3 理解“机器学习”中的“学习” 1458.2.4 导数求解与梯度下降 1458.2.5 学习速率? 与迭代次数的设置 1468.3 线性回归算法实战——糖尿病患者病情预测 146第9章 逻辑回归算法 1499.1 逻辑回归算法的基础知识 1499.1.1 直线分割平面 1499.1.2 逻辑函数 1539.2 深入理解逻辑回归算法 1559.2.1 直线分类器与逻辑回归的结合 1559.2.2 Sigmoid函数的作用 1589.2.3 逻辑回归模型 1599.3 逻辑回归算法实战—— 二维鸢尾花分类 1600章 神经网络算法 16410.1 神经网络算法的基础知识 16410.1.1 逻辑回归与神经网络的关系 16510.1.2 激活函数 16510.2 深入理解神经网络算法 16710.2.1 神经网络的表示 16710.2.2 做回归的神经网络 16810.2.3 做二分类的神经网络 16810.2.4 做多分类的神经网络 16910.3 神经网络的应用 16910.3.1 MLPClassifier分类 16910.3.2 MLPRegressor回归 1711章 线性判别算法 17311.1 线性判别算法的核心知识 17311.1.1 方差 17311.1.2 投影 17511.1.3 投影方式与方差的关系 17711.2 线性判别算法详解 17811.2.1 投影的实际应用 17911.2.2 另一种思路解决重叠问题 18011.2.3 线性判别算法的实质 18211.3 线性判别算法实战—— 花卉分类 1832章 K近邻算法 18712.1 K近邻算法的核心知识 18712.1.1 两点的距离公式 18712.1.2 权重 18812.2 K近邻算法详解 18812.2.1 K近邻算法原理 18812.2.2 K近邻算法的关键—— k的选择 19112.2.3 距离加权近邻算法 19112.3 K近邻算法实战—— 手写字体识别 1923章 决策树方法与随机森林 19413.1 决策树方法的基本知识 19413.2 决策树方法的原理 19713.2.1 信息熵 19813.2.2 分割数据 19913.2.3 计算信息增益 20113.3 决策树方法实战—— 红酒分类 20413.4 随机森林 2054章 贝叶斯算法 20614.1 贝叶斯算法的基础知识 20614.1.1 概率 20614.1.2 条件概率 20714.1.3 联合概率 20914.1.4 贝叶斯定理 21014.2 深入理解贝叶斯算法 21014.2.1 先验概率和后验概率 21114.2.2 词向量 21114.2.3 贝叶斯模型 21414.3 贝叶斯算法实战—— 文本分类 2225章 支持向量机 22515.1 支持向量机的基础知识 22515.1.1 向量 22515.1.2 点积 22815.1.3 投影 22915.1.4 向量与代数直线的关系 23015.2 深入理解支持向量机 23315.2.1 超平面 23315.2.2 支持向量机在二维空间的超平面 23415.2.3 计算超平面 23515.3 支持向量机实战—— 鸢尾花分类 2376章 PCA降维算法 24016.1 PCA降维算法的核心知识 24016.1.1 矩阵的直观理解 24016.1.2 特征向量的本质 24316.1.3 协方差 24416.1.4 协方差矩阵 24416.2 PCA降维算法详解 24416.2.1 协方差矩阵的特征向量 24516.2.2 PCA降维算法的Pytho实现 24616.3 PCA降维算法实战—— iris数据集可视化 2477章 SVD奇异值分解 24917.1 SVD奇异值分解的相关知识 24917.2 深入理解矩阵作用 25017.2.1 矩阵作用 25017.2.2 将矩阵作用分解为特征向量作用 25117.2.3 将矩阵作用分解为奇异矩阵作用 25317.3 SVD奇异值分解的应用 25517.3.1 U矩阵的理解 25717.3.2 V矩阵的理解 25817.3.3 S矩阵的理解 2598章 聚类算法 26018.1 深入理解K均值聚类算法 26018.2 Scikit库中的K均值聚类算法 26418.3 其他聚类算法 2669章 深度学习框架及其应用 26919.1 TensorFlow 26919.1.1 TensorFlow的基本概念 26919.1.2 TensorFlow的应用 27119.2 Keras 27719.3 PyTorch 28219.4 Caffe 288
作者介绍
王新宇,上海大学副教授,主讲机器学习课程,研究方向包括金融行业大数据挖掘、医学行业大数据挖掘、图像识别以及高性能计算。
序言

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP