基本信息 书名:近代应用数学基础 定价:99元 作者:苏维宜 出版社:清华大学出版社 出版日期:2024-07-01 ISBN:9787302620822 字数: 页码: 版次: 装帧:平装 开本:16开 商品重量: 编辑推荐 本书将近代应用数学基础的重要且关键性的内容,用精准数学思维的方式,有机地结合在一本教材中,从基本概念、重要理论、常用定理直到实用方法,一气呵成,使得学生不仅在认识与领会数学思维方面的能力得到提升,而且在掌握与使用近代应用数学知识的水平方面得到训练。由于近代应用数学门类甚多,来龙去脉错综交叉,抽象概念含义深刻,重要理论思路开阔,常用定理证明细致,英文的数学词汇量更大,这些都是初学者难以体会的要害之处。本书在关键时刻、关键章节中予以点拨,还辅以“重点讲授”的讲义,而英文文本中含近代应用数学的英文词汇、数学常用英语语法,更对学生有特殊的帮助。 内容提要 本书系统地介绍集合论、近世代数、点集拓扑、泛函分析、Fourier分析、分布理论、微分几何等近代应用数学的基本内容,及其在自然科学领域中的应用。书中强调对近代数学基本概念的理解、对重要论证方法的思路分析,以培养读者掌握并应用近代应用数学工具解决本专业的实际问题。20世纪初期至今的百余年中,数学科学与自然科学诸领域相辅相成,互相促进,彼此渗透,共同发展,使得数学科学成为当今各个科学领域中不可或缺的重要工具。因此介绍近代应用数学基本内容的教材已成当务之急,本书就起了这样的重要作用。 目录 PrefaceChapter 1Set,Structure of Operation on Set1.1Sets,the Relations and Operationetween Sets1.1.1Relationetween sets1.1.2Operationetween sets1.1.3Mappingetween sets1.2Structures of Operations on Sets1.2.1Groups,rings,fields,and linear spaces1.2.2Group theory,some important groups1.2.3Subgroups,product groups,quotient groupsExercise 1Chapter 2Linear Spaces and Linear Transformations2.1Linear Spaces2.1.1Examples2.1.2Bases of linear spaces2.1.3Subspaces and product/directsum/quitient spaces2.1.4Inner product spaces2.1.5Dual spaces2.1.6Structures of linear spaces2.2Linear Transformations2.2.1Linear operator spaces2.2.2Conjugate operators of linear operators2.2.3Multilinear algebraExercise 2Chapter 3Basic Knowledge of Point Set Topology3.1Metric Spaces,Normed Linear Spaces3.1.1Metric spaces3.1.2Normed linear spaces3.2Topological Spaces3.2.1Some definitions in topological spaces3.2.2Classification of topological spaces3.3Continuous Mappings on Topological Spaces3.3.1Mappingetween topological spaces,continuity of mappings3.3.2Subspaces,product spaces,quotient spaces3.4Important Properties of Topological Spaces3.4.1Separation axioms of topological spaces3.4.2Connectivity of topological spaces3.4.3Compactness of topological spaces3.4.4Topological linear spacesExercise 3Chapter 4Foundation of Functional Analysis4.1Metric Spaces4.1.1Completion of metric spaces4.1.2Compactness in metric spaces4.1.3Bases of Banach spaces4.1.4Orthgoonal systems in Hilbert spaces4.2Operator Theory4.2.1Linear operators on Banach spaces4.2.2Spectrum theory of bounded linear operators4.3Linear Functional Theory4.3.1Bounded linear functionals on normed linear spaces4.3.2Bounded linear functionals on Hilbert spacesExercise 4Chapter 5Distribution Theory5.1Schwartz Space,Schwartz Distribution Space5.1.1Schwartz space5.1.2Schwartz distribution space5.1.3Spaces ERn,DRn and their distribution spaces5.2Fourier Transform on LpRn,1≤p≤25.2.1Fourier transformations on L1R5.2.2Fourier transformations on L2R5.2.3Fourier transformations on LpRn,15.3Fourier Transform on Schwartz Distribution Space5.3.1Fourier transformations of Schwartz functions5.3.2Fourier transformations of Schwartz distributions5.3.3Schwartz distributions with compact supports5.3.4Fourier transformations of convolutions of Schwartz distributions5.4Wavelet Analysis5.4.1Introductio5.4.2Continuous wavelet transformations5.4.3Discrete wavelet transformations5.4.4Applications of wavelet transformationsExercise 5Chapter 6Calculus on Manifolds6.1Basic Concepts6.1.1Structures of differential manifolds6.1.2Cotangent spaces,tangent spaces6.1.3Submanifolds6.2External Algebra6.2.1(r,s)type tensors,(r,s)type tensor spaces6.2.2Tensor algebra6.2.3Grassmann algebra (exterior algebra)6.3Exterior Differentiation of Exterior Differential Forms6.3.1Tensor bundles and vector bundles6.3.2Exterior differentiations of exterior differential form6.4Integration of Exterior Differential Forms6.4.1Directions of smooth manifolds6.4.2Integrations of exterior differential forms on directed manifold M6.4.3Stokes formula6.5Riemann Manifolds, Mathematics and Modern Physics6.5.1Riemann manifolds6.5.2Connections6.5.3Lie group and movingframe method6.5.4Mathematics and modern physicsExercise 6Chapter 7Complimentary Knowledge7.1Variational Calculus7.1.1Variation and variation problems7.1.2Variation principle7.1.3More general variation problems7.2Some Important Theorems in Banach Spaces7.2.1StoneWeierstrass theorems7.2.2Implicit and inversemapping theorems7.2.3Fixed point theorems7.3Haar Integrals on Locally Compact GroupsExercise 7ReferencesIndex 作者介绍 苏维宜,南京大学数学系教授,博士生导师。科研主攻方向是数学科学的重要分支——调和分析与分形分析。发表学术论文百余篇(其中半数以上发表在国内外SCI期刊上)。科研专著3部。完成国家重大基础研究项目(非线性科学)的子项目(分形分析)一项、国家自然科学基金面上项目十余项。培养获数学博士学位的研究生15名、获硕士学位的22名。指导博士后7名。科研成果卓著,是国内公认的本领域的学术带头人。在国际上有较大影响,多次主办国内外数学学术会议,并应邀作学术报告。教学方面,数十年中开设数学系基础课程、专业课程十余门,主持南京大学、江苏省、国家教学改革项目4项,主持国家精品课程《高等数学》十余年。编写本科生、研究生教材4本。在教育科研战线上辛勤耕耘52年,爱岗敬业,严谨治学。教学精益求精,深受学生爱戴,2015年荣获南京大学教学终身成就奖。 序言
以下为对购买帮助不大的评价