李辉,中共党员,教授、博导,湖北省特聘专家,***\"青年****”入选者,国家重点研发计划项目首席科学家,IEEE高级会员。于1995年至2002年就读于华中科技大学机械科学与工程学院,获得工学学士与硕士学位。作者于2002年获得新加坡科研局博士奖学金,在新加坡国立大学(NUS)电子与计算机系和新加坡数据存储研究所(DSI)进行博士学位的联合培养,师从于新加坡数据存储研究所高级研究科学家(Senior research scientist)刘波博士(国家\"****”特聘专家,教育部长江学者讲座教授)和新加坡国立大学电子与计算机工程系教授Chong Tow Chong(现任新加坡理工大学(SUTD)校长),并于2007年获得工学博士学位。作者于2008年进入美国加州大学圣地亚哥分校(UCSD)从事博士后研究,师从于UCSD机械和科学工程学院前主席、磁记录中心首席教授Frank E. Talke院士。作者于2005年至2013年就职于日立公司(Hitachi)亚洲研究与发展中心,其中于2006年在日立总部中央研究所交流半年,2008年起担任研发中心项目领导及副经理。在新加坡、日本和美国长达11年的学习和科研工作经历,主攻磁记录硬盘可靠性研究,实现微机电系统的高精度定位控制设计和应用。作者主持完成与美国美国加州大学圣地亚哥分校,新加坡数据存储研究所和日立日本本部的联合科研项目7项。作者2012年入选国际电器与电子工程师学会(IEEE)高级会员,2013年入选***\"青年****”,获聘为武汉大学教授、博士生导师,2014年被授予湖北省特聘专家称号。作者主要从事先进制造工艺过程、在线监测及产品可靠性等研究,发表SCI期刊论文80余篇、国际会议论文60余篇,在美国、新加坡、韩国做特邀报告4次。主编英文专著2部、中文专著1部,获国家科学技术学术著作出版基金资助1次。提交/授权国家发明专利41项、授权软件著作权3项。作者承担科研项目包括国家自然科学基金委重大科研仪器研制项目(教育部唯一推荐)、国家重点研发计划\"增材制造与激光制造”重点专项、国家重点研发计划\"网络协同制造和智能工厂”重点专项(首席)、JKW基础加强项目、湖北省技术创新专项(重大项目)、广东省重点领域研发计划、四川省重点研发计划、广东省科技创新战略专项资金自由申请项目、深圳市基础研究计划项目、深圳市协同创新计划国际合作研究项目、华为公司技术咨询报告等。
【目录】
Chapter 1 Introduction1 1.1 Background2 1.2 Motivation3 1.3 Outline4 Chapter 2 Investigation of the flow field in Laser-based Powder Bed Fusion manufacturing5 2.1 Introduction7 2.2 Simulation model of the L-PBF printer10 2.2.1 Problem description10 2.2.2 Geometric model of the L-PBF printer11 2.2.3 Numerical model of the L-PBF printer12 2.3 Simulation results16 2.3.1 Distribution of the flow field16 2.3.2 Distribution of the temperature field21 2.3.3 Distribution of spatter particles23 2.4 Conclusions28 References30 Chapter 3 Investigation of optimizing the flow field with fluid cover in Laser-based Powder Bed Fusion manufacturing process33 3.1 Introduction35 3.2 Simulation model of L-PBF printer37 3.2.1 Geometry of L-PBF printer with a fluid stabilizing cover37 3.2.2 Numerical model of printer with a fluid stabilizing cover37 3.2.3 Mesh of L-PBF printer with a fluid stabilizing cover39 3.2.4 Model of the fluid stabilizing cover and particles40 3.3 Simulation results and discussion43 3.3.1 Influence of the fluid stabilizing cover on the flow field43 3.3.2 Influence of fluid stabilizing cover on particle distribution and removing rate47 3.4 Summary and conclusions51 References53 Chapter 4 Numerical investigation of controlling spatters with negative pressure pipe in Laser-based Powder Bed Fusion process54 4.1 Introduction56 4.2 Simulation model of L-PBF printer59 4.2.1 Geometric model of L-PBF printer59 4.2.2 Numerical model of L-PBF printer61 4.3 Simulation results and discussions64 4.3.1 Effect of pipe diameter68 4.3.2 Effect of outlet flow rate70 4.3.3 Effect of initial particle velocity74 4.4 Summary and conclusions76 References78 Chapter 5 Evolution of molten pool during Laser-based Powder Bed Fusion of Ti-6Al-4V80 5.1 Introduction82 5.2 Modeling approach and numerical simulation85 5.2.1 Model establishing and assumptions85 5.2.2 Governing equations87 5.2.3 Heat source model87 5.2.4 Phase change88 5.2.5 Boundary conditions setup89 5.2.6 Mesh generation90 5.3 Experimental procedures91 5.4 Results and discussions92 5.4.1 Surface temperature distribution and morphology92 5.4.2 Formation and solidification of the molten pool94 5.4.3 Development of the evaporation region98 5.5 Conclusions101 References103 Chapter 6 Simulation of surface deformation control during Laser-based Powder Bed Fusion Al-Si-10Mg powder using an external magnetic field107 6.1 Introduction109 6.2 Modeling and simulation112 6.2.1 Modeling of L-PBF112 6.2.2 Mesh model and basic assumptions113 6.2.3 Heat transfer conditions114 6.2.4 Marangoni convection115 6.2.5 Phase-change material115 6.2.6 Lorentz force116 6.3 Results118 6.3.1 Velocity field in the molten pool118 6.3.2 Lorentz force in the MP121 6.3.3 Surface deformation of the sample123 6.4 Conclusions127 References128 Chapter 7 Influence of laser post- processing on pore evolution of Ti-6Al-4V alloy by Laser-based Powder Bed Fusion131 7.1 Introduction133 7.2 Experimental procedures136 7.2.1 Sample fabrication136 7.2.2 Determination of porosity by micro-CT137 7.3 Modeling and simulation140 7.3.1 Numerical model140 7.3.2 Moving Gaussian heat source143 7.3.3 Thermal boundary conditions143 7.3.4 Marangoni effect, surface tension and recoil pressure144 7.4 Numerical results and discussion145 7.5 Conclusions152 References153 Chapter 8 Evolution of multi pores in Ti-6Al-4V/Al-Si-10Mg alloy during laser post-processing157 8.1 Introduction159 8.2 Experimental procedures162 8.2.1 Sample preparation162 8.2.2 Detection of porosity by mirco-CT162 8.3 Model and simulation165 8.3.1 Simulation model165 8.3.2 Gaussian heat source167 8.3.3 Latent heat of phase change168 8.3.4 Level-set method169 8.3.5 Boundary conditions169 8.4 Numerical results and discussion171 8.5 Conclusions177 References179 Chapter 9 Investigation of laser polishing of four Laser-based Powder Bed Fusion alloy samples182 9.1 Introduction184 9.2 Model and theoretical calculation188 9.2.1 Physical model and assumptions188 9.2.2 Governing equations and boundary conditions190 9.2.3 Simulation results192 9.3 Experimental methods195 9.3.1 Sample fabrication195 9.3.2 Morphology observation by 3D optical profiler198 9.3.3 Experimental results199 9.4 Conclusions206 References208
以下为对购买帮助不大的评价