带跳的随机微分方程理论及其应用(英文版)
¥
35.91
7.3折
¥
49
九品
仅1件
作者司徒荣 著
出版社世界图书出版公司
出版时间2012-01
版次1
装帧平装
货号A10
上书时间2024-10-30
商品详情
- 品相描述:九品
图书标准信息
-
作者
司徒荣 著
-
出版社
世界图书出版公司
-
出版时间
2012-01
-
版次
1
-
ISBN
9787510040566
-
定价
49.00元
-
装帧
平装
-
开本
24开
-
纸张
胶版纸
-
页数
434页
-
正文语种
简体中文
- 【内容简介】
-
《带跳的随机微分方程理论及其应用(英文版)》是一部讲述随机微分方程及其应用的教程。内容全面,讲述如何很好地引入和理解ito积分,确定了ito微分规则,解决了求解sde的方法,阐述了girsanov定理,并且获得了sde的弱解。书中也讲述了如何解决滤波问题、鞅表示定理,解决了金融市场的期权定价问题以及著名的black-scholes公式和其他重要结果。特别地,书中提供了研究市场中金融问题的倒向随机技巧和反射sed技巧,以便更好地研究优化随机样本控制问题。这两个技巧十分高效有力,还可以应用于解决自然和科学中的其他问题。
- 【目录】
-
preface
acknowledgement
abbreviationsandsomeexplanations
Ⅰstochasticdifferentialequationswithjumpsinrd
1martingaletheoryandthestochasticintegralforpoint
processes
1.1conceptofamartingale
1.2stoppingtimes.predictableprocess
1.3martingaleswithdiscretetime
1.4uniformintegrabilityandmartingales
1.5martingaleswithcontinuoustime
1.6doob-meyerdecompositiontheorem
1.7poissonrandommeasureanditsexistence
1.8poissonpointprocessanditsexistence
1.9stochasticintegralforpointprocess.squareintegrablemartingales
2brownianmotion,stochasticintegralandito'sformula
2.1brownianmotionanditsnowheredifferentiability
2.2spaces0andz?
2.3ito'sintegralsonl2
2.4ito'sintegralsonl2,loc
2.5stochasticintegralswithrespecttomartingales
2.6ito'sformulaforcontinuoussemi-martingales
2.7ito'sformulaforsemi-martingaleswithjumps
2.8ito'sformulaford-dimensionalsemi-martingales.integrationbyparts
2.9independenceofbmandpoissonpointprocesses
2.10someexamples
2.11strongmarkovpropertyofbmandpoissonpointprocesses
2.12martingalerepresentationtheorem
3stochasticdifferentialequations
3.1strongsolutionstosdewithjumps
3.1.1notation
3.1.2aprioriestimateanduniquenessofsolutions
3.1.3existenceofsolutionsforthelipschitziancase
3.2exponentialsolutionstolinearsdewithjumps
3.3girsanovtransformationandweaksolutionsofsdewithjumps
3.4examplesofweaksolutions
4someusefultoolsinstochasticdifferentialequations
4.1yamada-watanabetypetheorem
4.2tanakatypeformulaandsomeapplications
4.2.1localizationtechnique
4.2.2tanakatypeformulaind-dimensionalspace
4.2.3applicationstopathwiseuniquenessandconvergenceofsolutions
4.2.4tanakatypeformualin1-dimensionalspace
4.2.5tanakatypeformulainthecomponentform
4.2.6pathwiseuniquenessofsolutions
4.3localtimeandoccupationdensityformula
4.4krylovestimation
4.4.1thecasefor1-dimensionalspace
4.4.2thecaseford-dimensionalspace
4.4.3applicationstoconvergenceofsolutionstosdewithjumps
5stochasticdifferentialequationswithnon-lipschitziancoefficients
5.1strongsolutions.continuouscoefficientswithpconditions1
5.2theskorohodweakconvergencetechnique
5.3weaksolutions.continuouscoefficients
5.4existenceofstrongsolutionsandapplicationstoode
5.5weaksolutions.measurablecoefficientcase
Ⅱapplications
6howtousethestochasticcalculustosolvesde
6.1thefoundationofapplications:ito'sformulaandgirsanov'stheorem
6.2moreusefulexamples
7linearandnon-linearfiltering
7.1solutionsofsdewithfunctionalcoefficientsandgirsanovtheorems
7.2martingalerepresentationtheorems(functionalcoefficientcase)
7.3non-linearfilteringequation
7.4optimallinearfiltering
7.5continuouslinearfiltering.kalman-bucyequation
7.6kalman-bucyequationinmulti-dimensionalcase
7.7moregeneralcontinuouslinearfiltering
7.8zakaiequation
7.9examplesonlinearfiltering
8optionpricinginafinancialmarketandbsde
8.1introduction
8.2amoredetailedderivationofthebsdeforoptionpricing
8.3existenceofsolutionswithboundedstoppingtimes
8.3.1thegeneralmodelanditsexplanation
8.3.2aprioriestimateanduniquenessofasolution
8.3.3existenceofsolutionsforthelipschitziancase
8.4explanationofthesolutionofbsdetooptionpricing
8.4.1continuouscase
8.4.2discontinuouscase
8.5black-scholesformulaforoptionpricing.twoapproaches
8.6black-scholesformulaformarketswithjumps
8.7moregeneralwealthprocessesandbsdes
8.8existenceofsolutionsfornon-lipschitziancase
8.9convergenceofsolutions
8.10explanationofsolutionsofbsdestofinancialmarkets
8.11comparisontheoremforbsdewithjumps
8.12explanationofcomparisontheorem.arbitrage-freemarket
8.13solutionsforunbounded(terminal)stoppingtimes
8.14minimalsolutionforbsdewithdiscontinuousdrift
8.15existenceofnon-lipschitzianoptimalcontrol.bsdecase
8.16existenceofdiscontinuousoptimalcontrol.bsdesinrl
8.17applicationtopde.feynman-kacformula
9optimalconsumptionbyh-j-bequationandlagrangemethod
9.1optimalconsumption
9.2optimizationforafinancialmarketwithjumpsbythelagrangemethod
9.2.1introduction
9.2.2models
9.2.3maintheoremandproof
9.2.4applications
9.2.5concludingremarks
10comparisontheoremandstochasticpathwisecontrol'
10.1comparisonforsolutionsofstochasticdifferentialequations
10.1.11-dimensionalspacecase
10.1.2componentcomparisonind-dimensionalspace
10.1.3applicationstoexistenceofstrongsolutions.weakerconditions
10.2weakandpathwiseuniquenessfor1-dimensionalsdewithjumps
10.3strongsolutionsfor1-dimensionalsdewithjumps
10.3.1non-degeneratecase
10.3.2degenerateandpartially-degeneratecase
10.4stochasticpathwisebang-bangcontrolforanon-linearsystem
10.4.1non-degeneratecase
10.4.2partially-degeneratecase
10.5bang-bangcontrolford-dimensionalnon-linearsystems
10.5.1non-degeneratecase
10.5.2partially-degeneratecase
11stochasticpopulationconttrolandreflectingsde
11.1introduction
11.2notation
11.3skorohod'sproblemanditssolutions
11.4momentestimatesanduniquenessofsolutionstorsde
11.5solutionsforrsdewithjumpsandwithcontinuouscoef-ficients
11.6solutionsforrsdewithjumpsandwithdiscontinuousco-etticients
11.7solutionstopopulationsdeandtheirproperties
11.8comparisonofsolutionsandstochasticpopulationcontrol
11.9caculationofsolutionstopopulationrsde
12maximumprincipleforstochasticsystemswithjumps
12.1introduction
12.2basicassumptionandnotation
12.3maximumprincipleandadjointequationasbsdewithjumps
12.4asimpleexample
12.5intuitivethinkingonthemaximumprinciple
12.6somelemmas
12.7proofoftheorem354
aashortreviewonbasicprobabilitytheory
a.1probabilityspace,randomvariableandmathematicalex-pectation
a.2gaussianvectorsandpoissonrandomvariables
a.3conditionalmathematicalexpectationanditsproperties
a.4randomprocessesandthekolmogorovtheorem
bspacedandskorohod'smetric
cmonotoneclasstheorems.convergenceofrandomprocesses41
c.1monotoneclasstheorems
c.2convergenceofrandomvariables
c.3convergenceofrandomprocessesandstochasticintegrals
references
index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价