目录 Chapter 1Introduction1 1.1Increasing Challenges in Advanced Cooling2 1.2Water Cooling and New Alternatives4 1.3Basic Features of Conventional Heat Exchangers6 1.3.1Heat Exchanger Classification by Geometry and Structure7 1.3.2Heat Exchange Enhancement Techniques12 1.4Limitations of Waterbased Heat Exchanger13 1.4.1Overall Properties of Water13 1.4.2Adhesion and Cohesion14 1.4.3Surface Tension14 1.4.4Specific Heat14 1.4.5Conductivity15 1.5Liquid Metal Coolant for Chip Cooling15 1.6Some Facts about Liquid Metal17 1.7Revisit of Traditional Liquid Metal Cooling19 1.8Liquid Metal Enabled Innovation on Conventional Heat Exchanger22 1.9Potential Application Areas of Liquid Metal Thermal Management 23 1.9.1Chip Cooling23 1.9.2Heat Recovery25 1.9.3Energy System27 1.9.4Heat Transfer Process Engineering28 1.9.5Aerospace Exploration28 1.9.6Appliances in Large Power Systems29 1.9.7Thermal Interface Material29 1.9.8More New Conceptual Applications31 1.10Technical and Scientific Challenges in Liquid Metal Heat Transfer 32 1.11Conclusion35 References36 Chapter 2Typical Liquid Metal Medium and Properties for Advanced Cooling44 2.1Typical Properties of Liquid Metals45 2.1.1Low Melting Point45 2.1.2Thermal Conductivity45 2.1.3Surface Tension48 2.1.4Heat Capacity49 2.1.5Boiling Temperature50 2.1.6Subcooling Point50 2.1.7Viscosity51 2.1.8Electrical Properties52 2.1.9Magnetic Properties52 2.1.10Chemical Properties52 2.2Alloy Candidates with Low Melting Point53 2.2.1Overview53 2.2.2GaIn Alloy53 2.2.3NaK Alloy55 2.2.4Woods Metal55 2.3Nano Liquid Metal as More Conductive Coolant or Grease55 2.3.1Technical Concept of Nano Liquid Metal55 2.3.2Performance of Typical Nano Liquid Metals56 2.4Liquid Metal Genome towards New Material Discovery61 2.4.1About Liquid Metal Material Genome61 2.4.2Urgent Needs on New Liquid Metals62 2.4.3Category of Room Temperature Liquid Metal Genome62 2.5Fundamental Routes toward Finding New Liquid Metal Materials64 2.5.1Alloying Strategy from Single Metal Element64 2.5.2Making Composite from Binary Liquid Alloys65 2.5.3Realizing Composite from Multicomponent Liquid Alloys66 2.5.4Nano Technological Strategies66 2.5.5Additional Physical Approaches66 2.5.6Chemical Strategies67 2.6Fundamental Theories for Material Discovery68 2.6.1Calculation of Phase Diagram (CALPHAD)68 2.6.2First Principle Prediction69 2.6.3Molecular Dynamics Simulation69 2.6.4Other Theoretical Methods70 2.7Experimental Ways for Material Discovery70 2.8Theoretical and Technical Challenges71 2.9Conclusion73 References73Chapter 3Fabrications and Characterizations of Liquid Metal Cooling Materials80 3.1Preparation Methods81 3.1.1Alloying81 3.1.2Oxidizing81 3.1.3Fabrication of Liquid Metal Droplets82 3.1.4Preparation of Liquid Metal Nano Particles83 3.1.5Coating of Liquid Metal Surface84 3.1.6Loading with Nano Materials86 3.1.7Compositing with Other Materials87 3.2Characterizations of Functional Liquid Metal Materials87 3.2.1Regulation of Thermal Properties88 3.2.2Regulation of Electrical Properties88 3.2.3Regulation of Magnetic Properties89 3.2.4Regulation of Fluidic Properties89 3.2.5Regulation of Chemical Properties89 3.3Liquid Metal as Energy Harvesting or Conversion Medium90 3.4Low Temperature Liquid Metal Used in Harsh Environment91 3.4.1Working of Liquid Metal under Cryogenic Situation91 3.4.2Basics about Cryogenic Cooling92 3.5Potential Metal Candidates with Melting Point below Zero Centigrade 94 …… Flow487 11.4.3Convection Coefficient under Different Coolant VolumeFlow488 11.4.4Thermal Resistance under Different Pump Power489 11.4.5Flow Pattern Discrimination490 11.4.6Flow Resistance Comparison491 11.4.7Convective Heat Transfer Coefficient Comparison492 11.4.8Other Flowing Issues493 11.4.9Liquid Metal Alloybased Mini Channel Heat Exchanger494 11.5Hybrid Mini/micro Channel Heat Sink Based on Liquid Metal and Water494 11.5.1Hybrid Mini/micro Channel Heat Sink495 11.5.2Materials496 11.5.3Test Platform497 11.5.4Cooling Capability Comparison with Pure Water CoolingSystem498 11.6Flow and Thermal Modeling and Optimization of Micro/mini Channel Heat Sink502 11.6.1About Micro/mini Channel Heat Sink502 11.6.2Flow and Thermal Model503 11.6.3Optimization of Micro/mini Channel Heat Sink505 11.6.4Micro Channel Water Cooling505 11.6.5Channel Aspect Ratio506 11.6.6Channel Number and Width Ratio507 11.6.7Velocity508 11.6.8Base Thickness509 11.6.9Structural Material510 11.6.10Mini Channel Liquid Metal Cooling510 11.6.11Mini Channel Water Cooling513 11.7Conclusion514 References515Chapter 12Hybrid Cooling via Liquid Metal and Aqueous Solution517 12.1Electrically Driven Hybrid Cooling via Liquid Metal and Aqueous Solution518 12.1.1Coolants and Driving Strategy518 12.1.2System Designing519 12.1.3Continuous Actuation of Liquid Metal Spheres Circular Motion519 12.1.4Heat Transfer Performance520 12.1.5Thermal Resistance Components521 12.1.6Heat Transfer Capacity under Different Driving Voltages522 12.1.7Electrical Driving of Liquid Metal Droplet523 12.1.8Liquid Metal Droplets Periodic Circular Motion in Different Conditions 524 12.1.9More Potential Coolants with Improved Performances525 12.2Alternating Electric Field Actuated Liquid Metal Cooling526 12.2.1Liquid Metal as Water Driving Pump526 12.2.2Performance of the Liquid Metal Droplet Driven Flow527 12.3Selfdriving Thermopneumatic Liquid Metal Cooling or Energy Harvesting535 12.3.1Hybrid Coolants towards Automatic Heating Driving535 12.3.2Running of Thermopneumatic Liquid Metal Energy Harvester536 12.4Hybrid Liquid Metalwater Cooling System for Heat Dissipation541 12.4.1Combined Liquid Metal Heat Transport and Water Cooling541 12.4.2Working Performances of Combined Liquid Metal and Water Cooling542 12.4.3Theoretical Analysis on Combined Liquid Metal and Water Cooling547 12.5Electromagnetic Driving Rotation of Hybrid Liquid Metal and Solution Pool551 12.5.1Electromagnetic Driving Rotation of Hybrid Fluids551 12.5.2Rotational Motion of Liquid Metal in Electromagnetic Field552 12.5.3Controlling the Rotating Motion of Liquid Metal Pool555 12.5.4Liquid Metal Patterns Induced by Electric Capillary Force559 12.6Dynamic Interactions of Leidenfrost Droplets on Liquid Metal Surface566 12.7Conclusion574 References575Chapter 13Liquid Metal for the Harvesting of Heat and Energy577 13.1Direct Harvesting of Solar Thermal Power or Lowgrade Heat580 13.2Liquid Metalbased Thermoelectric Generation581 13.3Thermionic Technology587 13.4Liquid Metalbased MHD Power Generation589 13.5Alkali Metalbased Thermoelectric Conversion Technology590 13.6Direct Solar Thermoelectric Power Generation591 13.7Liquid Metal Cooled Photovoltaic Cell596 13.7.1Thermal Management for Optical Concentration Solar Cells596 13.7.2Experimental System597 13.7.3Performance Evaluation598 13.7.4Theoretical Evaluation on Thermal Resistance601 13.8Solar Thermionic Power Generation605 13.9MHD and AMTEC Technology609 13.10Cascade System612 13.11Remarks and Future Developments614 13.12Harvesting Heat to Generate Electricity via Liquid Metal Thermosyphon Effect616 13.13Liquid Metal Thermal Joint619 13.14Conclusion626 References626 Chapter 14Combinatorial Liquid Metal Heat Transfer towards Extreme Cooling630 14.1Proposition of Combinatorial Liquid Metal Heat Transfer630 14.2Basic Cooling System633 14.2.1Abstract Division of A Cooling System633 14.2.2Heat Acquisition Segment635 14.2.3Heat Rejection Segment637 14.2.4Heat Transport Segment637 14.3LMPM PCM Combined Cooling System639 14.3.1LMPM PCM Cooling639 14.3.2LMPM PCM Against Thermal Shock642 14.4Liquid Metal Convectionbased Cooling Systems642 14.5All Liquid Metal Combined Cooling System645 14.6Other Alternative Combinations645 14.7Conclusion646 References647 Appendix653 Index656
以下为对购买帮助不大的评价